Category Archives: Current projects

Door #15: The eye of the beholder

It’s funny to see the different reactions to fresh material that comes in to the museum;  the exhibition team had  received some kelp that will be pressed and dried for the new exhibitions (opening fall 2019), and I ducked in to secure some of the fauna sitting on the kelp before it was scraped off and discarded. For the botanists, the animals were merely a distraction that needed to be removed so that they could deal with the kelp, whilst I was trying to avoid too much algae in the sample as it messes up the fixation of the animals.

I chose the right shirt for the day- it’s full of nudibranchs! (photo: L. Martell)

 

I then spirited my loot into the lab, and set up camp.

Count me in amongst the people who stare at lumps of seaweed.

 

Who’s there? The whole lump is ~12 cm.

How many animals do you see here? Which ones appeal to you?

I have made a quick annotation of some of the biota here:

Note that these are just some of the critters present…! (photo: K. Kongshavn)

Let’s go closer on a small piece of algae:

Now, what do you see? (photo: K. Kongshavn)

For Luis, the first thing to catch the eye was (of course) the Hydrozoa

Hydrozoans (the christmas light looking strings), encrusting bryozoans (the flat, encrusting growth on on the algae – you might also know them as moss animals), and some white, spiralling polychaete tubes  (photo: K. Kongshavn)

Did you spot the sea hare (Aplysia punctata?) Look a bit above the middle of the photo of the tiny aquarium with the black background. Do you see a red-pink blob?

Hello, Aplysia punctata! (photo: K. Kongshavn)

There were also several other sea slugs that I have handed over to Cessa for inclusion in the sea slugs of Southern Norway project, here are a few:

Then there were the shelled gastropods:

The brittle star from the earlier image – this is a Ophiopholis aculeata, the crevice sea star (photo: K. Kongshavn)

In fact, they both are Ophiopholis aculeata (in Norwegian we call them “chameleon brittle stars” – they live up to the name!), one of the very common species around here. (photo: K. Kongshavn)

One of the colonial ascidian tunicates (and some of the ever present bryozoa just below it) (photo: K. Kongshavn)

Most of these animals will be barcoded, and will help build our reference library for species that occur in Norway. I also hope that they may have helped open your eyes to some of the more inconspicuous creatures that live just beneath the surface?

2019 will see the start of a new species taxonomy project where we will explore the invertebrate fauna of shallow-water rocky shores, so there will be many more posts like this to come!

-Katrine

Door #14: Annelids from the deep Norwegian waters

We have recently started a new mapping project funded by the Norwegian Taxonomy Initiative (Artsdatabanken) on the deep-sea annelids. The annelid fauna in the deep areas of the Norwegian Sea, deeper than 2000 m, has recently been shown to be significantly different from the upper slope and shelf fauna. Morphology-based studies indicate that as much as 40% of the deep-sea annelid species are new to science, and initial results from DNA-barcoding provided even higher numbers. This project aims to characterize, describe and map these unknown species of annelids and will provide much needed baseline knowledge for monitoring of environmental effects from future deep-sea mining and other human activities.

Figures: Tom selecting 96 specimens of annelids from HAUSGARTEN for DNA barcoding.

We have started the project by processing a number of samples from a German expedition on RV Polarstern to the long-term research observatory HAUSGARTEN located at the Fram Strait. The samples have been collected between 1000 and 5000 m depth and harbor more than 30 putative morphospecies. We are going to barcode 96 individuals from this material to supplement the barcode library of the Norwegian annelids and to help resolve taxonomical problems within several taxa.

-Nataliya

 

Door # 11: Animal rocks and flower animals

The phylum Cnidaria is a diverse group of animals united by their ability to synthesize a complex type of ‘stinging’ cells called cnidocytes, which they use to hunt for their prey. The more than 13 000 species of cnidarians come in many shapes and colors, from the familiar jellyfish and corals, to the less famous myxozoans, hydroids, and siphonophores (read some more about those here). Because cnidarians live and thrive in marine and freshwater environments all around the world, humans have become familiar with them since ancient times: they have been feared for their sting, worn as jewelry, or simply admired for their beauty.

Sea nettles (genus Chrysaora) and ‘terrestrial’ nettles (genus Urtica) belong to very different groups of organisms, but share their name because of their stinging abilities. In some languages, like Norwegian and Swedish, cnidarians are called “nettle animals” (nesledyr and nässeldjur, respectively). Photo: Luis Martell (left), Nannie Persson (right).

Despite this familiarity, the true nature of cnidarians long remained unclear to naturalists and non-professionals alike. Perhaps to a greater extent than any other large phylum in the animal kingdom, people have historically failed to recognize cnidarians as animals, or even as living beings. Early civilizations had some knowledge about corals, sea-anemones and large jellyfish, all of which were encountered frequently along the coasts, but although fishermen and sailors knew about the existence of coral reefs (the massive bodies of coral represented major hazards for navigation), the animals themselves were probably seen only as pieces of rock. Some of the sessile species of cnidarians with a hard skeleton were considered minerals until the second half of the 17th century, when the use of magnifying lenses and the invention of the microscope allowed scientists to realize that the stony coral fragments washed up on the shore were actually made up of small flower-like organisms.

With their tentacles surrounding a central disc, sea anemones (in the image a specimen of Aiptasia) look somewhat like submarine flowers. Their plant namesakes (for example the wood anemone Anemone nemorosa) are strictly terrestrial. Photo: Joan J. Soto-Àngel (left), Nannie Persson (right).

Historically, the most persistent confusion regarding the cnidarians has been with plants and algae. For more than 1 500 years, the immobile sea anemones, sea fans, and hydroids were thought to be strange marine flowers and were consequently studied by botanists, not zoologists. They grow attached to the substrate and many species die if detached, which left early naturalists in doubt as to whether they were plants or animals. Thus, the category ‘zoophytes’ (from Ancient Greek ζῷον, zoon, ‘animal’ and φυτόν, phytón, ‘plant’) was created for them. It was only in the first half of the eighteenth century when this view started to change, thanks to the observations of J. A. Peyssonnel and the work of botanist Bernard de Jussieu, who together managed to convince their colleagues about the animal nature of the zoophytes.

The ‘sea tomato’ (Actinia equina) is a common cnidarian along the Atlantic coasts of Europe. It may look like a tomato when it is not covered by water, but is not related to its vegetal look-alike. Photo: Nannie Persson

The flowers of submerged marine plants (like this Cymodocea nodosa) are usually not as colorful or conspicuous as sea anemones and corals. Photo: Joan J. Soto Àngel

Today we know more about these organisms and there are no longer doubts about their affiliation to the animal kingdom, although we can still see evidence of their botanical past in the names of several cnidarian groups. The word Cnidaria comes from the Greek word κνίδη (knídē, meaning ‘nettle’, referring to the plant genus Urtica), and was inspired by the stinging power of the plants. One of the largest groups of cnidarians, the Anthozoa (which includes the flower-looking sea anemones and corals) is aptly named with a word deriving from the ancient Greek roots for flower (antho-) and animal (-zoa). Because there are still many open questions in cnidarian biology, initiatives that chart the diversity of cnidarians (like the successful project HYPNO and the upcoming project NORHYDRO) are necessary to get to know more about the particularities of these interesting animals!

-Luis Martell and Nannie Persson 


References:

Jussieu, B. de, 1742. Examen de quelques productions marines qui ont été mises au nombre des plantes, et qui sont l’ouvrage d’une sorte d’insecte de mer. Mem. Acad. Roy. Sci. Paris, 1742, 392.

Edwards, C. 1972. The history and state of the study of medusa and hydroids. Proc. R. S. E. (B). 73, 25: 247-257.

Door #10: The Molluscan Forum 2018 in London

Special 20th anniversary 22.11.18
The Malacological Society of London
Conference talk about citizen scientists

A few weeks ago, Manuel Malaquias, Justine Siegwald and me travelled to London in order to attend the 20th anniversary conference of the Malacological Society of London, UK. This society is dedicated to research and education on molluscs. Although based in London (as the name refers to), the society is internationally orientated and welcomes all members interested in the scientific study of molluscs. The society was founded in 1893 and registered as a charity. One of the many activities of the society is to organize meetings and symposia, and this year it turned out to be a 20th anniversary of the molluscan forum!

It was an incredible interesting day with a lot of inspirational posters and talks. My mission for that day was to present our ‘Sea slugs of Southern Norway’ project with the emphasis on how citizen scientist made this project a success. I wanted to share with the audience how citizen scientists with the right approach could be the future for many scientific studies.

Cessa presenting at the Molluscan Forum, 22th of November 2018

But first let us have a look into the meaning of citizen science. According to the Oxford English Dictionary, citizen science is scientific work undertaken by members of the general public, often in collaboration with or under the direction of professional scientists and scientific institutions. The term was first coined during the nineties in the United States of America. Since than it has grown in popularity, with multiple projects in the world that rely on the input of data generated by the general public. Some big and well-known examples are eBird, with roughly 411K users, Nasa Globe with 640K users, iNaturalist, with almost 1 million users and OPAL with 930K users and counting.

Increase of popularity of citizenscience projects per year, Nature 2018

Since the beginning of this year we put a lot of effort in setting up a network of volunteers and underwater photographers. We got many good people willing to contribute to our project and most them are located in the South of Norway, but we also have a few located more further up North in Norway. Currently we have around 150 members directly and indirectly involved in helping us with our project. We try to involve our citizen scientist in the project as much as possible and one way is by reaching out to them via several social media platforms. For example, in our Facebook group community members can participate in discussions about species descriptions and share their findings etc. But we also have an Instagram account that functions as a pocket field guide for followers. Besides we try to keep everyone up to date about the project by regular posting blogs.

Cessa showing the different social media platforms used in the project during the Molluscan Forum

But our key element in this project definitely goes to the assembly and design of our sampling kits. These were designed specially for our citizen scientists in order to make collecting easier, more accessible and more standardized for everyone. By trying to standardize the collecting steps with so-called instructed sampling kits we minimized the errors that could occur during sampling of the data. The sampling kits contain plastic jars for the samples, fixative, preprinted labels and a USB flash drive with enough space for high-resolution pictures and a preset excel file that only needs filling in.

Example of the content of a citizen science sampling kit designed for the Sea slugs of Southern Norway project

We noticed that this approach worked out and the data quantity and quality increased as well the recruitment became easier. When we look at all the Norwegian sea slug records from the museum collection since the 19th century, it consists of roughly 1400 records. In just over six months time we see that the contribution of the citizen scientists covers almost half of that.

A comparison of the amount of records collected by citizen scientists since this year compared to our museum collection

Eubranchus farrani species complex, one species or multiple?

The material that is sent in by the citizen scientists is at the moment being studied by us. We have two master students who will start working in January on a variety of taxonomic challenges by studying the different geographical material.

 

An example of this is Eubranchus farrani species complexes that have different color morphotypes from different geographical locations. Do we deal here with one species or multiple?

Stay tuned for a follow up!

Furthermore
Sea slugs of Southern Norway recently got its own Instagram account! Perfect for on the go if you would like to quickly check some species, click here https://www.instagram.com/seaslugsofsouthernnorway/ and don’t forget to follow us.

Become a member of the sea slugs of southern Norway facebook group, stay updated and join the discussion; https://www.facebook.com/groups/seaslugsofsouthernnorway/

Explore the world, read the invertebrate blogs!

-Cessa

Door #9: To catch an Amphipod

As many of you might have read earlier in this blog, the projects NorAmph and Hypno have been regularly sampling in Hjeltefjorden for the past year. As a part of my master thesis, I was lucky to be able to come with! My thesis will be about amphipods and their seasonal variety in Hjeltefjorden, which is super exiting!

The RP-sled used for the sampling.

For each time we go out, we sample with a RP-sled, a WP3 plankton net and we collect CTD data. The samples from the RP-sled will be used for my thesis and other projects if we find something interesting. During the last year we collected samples 9 times, which has given us some great days out at sea!

During these cruises we have had lots of fun! We have had cake, snacks and regularly done yoga on deck! We have been mostly lucky with the weather (except for our original cruise day in February, which had to be moved due to lots of wind, which you can read about here: Solskinnstokt)

 

A great view from our February cruise, with a clear blue sky and no wind! (Photo: K. Kongshavn)

We have been mostly lucky in getting great samples!

Lots of exciting material to get our hands on! (photo: AH Tandberg)

But sometimes not so lucky…

It is not easy to be a happy master student when the codend is almost empty… (Photo: AH Tandberg)

In October we had our last cruise, which was a great end to a year of sampling! We were not as lucky with the weather this time, but the samples look very nice. We also had cake to celebrate the last cruise day!

A great view in Hjeltefjorden (Photo: C. Østensvig)

Coffee breaks on deck are always important! (Photo: AH Tandberg)

It is somewhat sad to be done with the sampling, but with all the material collected, it is time to hit the lab! With all the samples, I sort out and identify all the amphipods I find. So far, I have found lots of cool amphipods, and I am starting to see some patterns in the material.

Here are some of the Amphipods I have found. All photos: K. Kongshavn

My work in the lab is far from done, and I am excited to look for new cool amphipods and hopefully find something interesting in their seasonal variation.

-Christine

Door # 6: The key to the question

We often say that without knowing the species you examine, you really can’t know a lot about whatever it is you are examining. But how do you get from knowing for example “this is an amphipod” to knowing “this is Amphilochoides serratipes”?

Three different Amphilochidae from Iceland

Most researchers would usually stop at the “this is an amphipod”-stage, and many specialists  would call it a day at “this amphipod belongs to the familily Amphilochidae”. but then there are the one or two researchers who have gone on to specialise in this family (I think there are three of us in the world at the moment).

But finally – those days are over!
As a special gift on this Nicholaus-day when all German colleagues get a special gift from St Nicholaus (who is Father Christmas) we present to all of you – regardless of nationality or faith:

The interactive and illustrated key to the NorthEast Atlantic species of Amphilochidae

The key is a product of a collaboration between the NorAmph-project and the German-lead IceAGE project that examines benthic animals around Iceland, and the technical production and web-hosting of the key is from the Norwegian Taxonomy Initiative (Artsprosjekt) (who – we have to say – also have financed the NorAmph-project!) Hurrah for a great collaboration!

Figure 14 from Tandberg et al

You might still wonder what an Amphilochid amphipod is?

The family Amphilochidae are amphipods that are quite small (1-6mm in length) and quite stout. They are not extremely good swimmers, though much of that can be from their small size – and from their short appendages. They can be found all over the world, and are common at many depths in our cold waters. Even though they are small and easily overlooked, they sometimes occur in relatively large numbers, and can contribute significantly to both the biomass and diversity of a sample. They have been found on hydrothermal vents at the southern part of the Mid-Atlantic ridge, and some have been found as loose associates of other invertebrates.

Also – they are quite cute, don’t you think?  Good luck with the identification!

-Anne Helene

Literature:

Brix S et. al. 2018. Amphipod family distributions around Iceland. ZooKeys 731: 1-53. doi: 10.3897/zookeys.731.19854

Tandberg AHS, Vader W 2018. On a new species of Amphilochus from deep and cold Atlantic waters, with a note on the genus Amphilochopsis (Amphipoda, Gammaridea; Amphilochidae). ZooKeys 731: 103-134. doi: 10.3897/zookeys.731.19899

Door #4: PSA: abstract submission for iBOL Conference is open!

For door #4 we are helping spread word about the 8th International Barcode of Life Conference, which will take place in Trondheim, Norway on June 17-20th next year.

Abstract submissions are open until January 15th 2019, so now is the time to start thinking (if you haven’t already).

The previous IBOL conference – the one in Kruger National Park, South Africa – was not just in an amazing location (which it undoubtedly was!), but covered a wide array of interesting topics and wonderful talks, and IBOL2019 is set to follow suit!

Check out the planned session themes and outstanding plenary speakers here.

The Norwegian participants at IBOL2017 – enthusiastic about launching Trondheim as the host for IBOL2019! Photo: Knut A. Hjelt

The University Museum in Bergen is one of the four University Museums that are coordinating the Norwegian Barcode of Life (NorBOL) project, and we will be presenting some of our findings on marine invertebrates at the conference  – hope to see you there!

You can find all the relevant information on the conference web page: http://dnabarcodes2019.org/

Door #3: Mollusc hunting around the world

The study of molluscs (malacology) has a long tradition in Norway. Despite the nearly 50,000 species dwelling in the world oceans and seas, a number only barely supersede by the arthropods, new species continue to be discovered and our understanding of the relationships and systematics of molluscs to change.

At the Natural History Museum of Bergen, the study of molluscs is focal, and research is carried out on various aspects of their diversity, morphology, ecology, systematics, evolution, and biogeography, using state of the art methods like DNA barcoding, molecular phylogenetics, and electron microscopy. Understanding the patterns and processes that drive present diversity in the oceans is one of our main goals and our research foci are framed within several “big questions”: How many and how can we differentiate between species? How do species originate in the oceans? Why some regions in the oceans are more diverse than others? Are mechanisms responsible for the patterns of diversity in the deep-sea the same as in shallow ecosystems?

Our quest for answers necessitate the continuous collection of new specimens and the exploration of remote geographies. We conduct regular fieldwork around the world including Norway, through numerous projects and partnerships.

Here are some snapshots from recent fieldwork from Manuel & team:

Working during October 2017 together with Professor João Macuio from the University Lurio (Pemba, Mozambique) in Nangata Bay (Nuarro, Mozambique) on a survey of the sea slug diversity inhabiting this pristine coral reef area and on an assessment of the structure and conservation status of the population of the threatened giant clam species (Tridacna maxima). Left image: Manuel Malaquias and João Macuio photographing sea slugs at the Nuarro Research Center.

João Macuio measuring underwater the total length of a specimen of the giant clam Tridacna maxima

Working in remote places requires often some capacity to improvise and during a fieldtrip to Taiwan while in the Penghu islands we had to convince the manager of our hostel to let us set up a field-lab in the garage among his gear and pet-cage!

Manuel and Trond Oskars, PhD candidate at the Museum, searching for molluscs during May 2017 at mangrove systems near the city of Kaohsiung, Taiwan

In the Penghu islands we had the opportunity to work in the field together with students from the National Penghu University of Science and Technology, here depicted in the right image helping collecting sea slugs along a water stream lined by few mangrove bushes.

After a three weeks fieldtrip to Vamizi island in the Quirimbas archipelago, north of Mozambique during May 2015, we were finally brought to shore at Palma village near the border with Tanzania where we had to do some final sorting and organization of samples under the curious eyes of the local villagers (Manuel Malaquias and Yara Tibiriça from the Zavora Marine Lab in Mozambique).

Fieldwork during May 2018 in the Oslo fjord as part of the project “Sea slugs of southern Norway” funded by Artsdatabanken. Left image: part of the team working through the catch of the day at the Tolboden Course Center in Drøbak, University of Oslo (left to right: Cessa Rauch, Manuel Malaquias, Torkild Bakken, Anders Schouw)

You can read more about some of these expeditions by exploring the posts found here (workshops) and here (fieldwork).

Manuel

Door #2: A glimpse of Hydrozoan anatomy

Hydroids and hydromedusae are abundant and widespread, but they can be difficult to identify, in part due to the overwhelming amount of terminology used to describe their polyps, colonies and medusae. The diversity of shapes and life cycle strategies in Hydrozoa is in fact so high that it is almost impossible to find a single set of descriptive terms for all species, and different glossaries have been developed for closely related families, sometimes genera, and also for the different stages in the life cycle of the same organism. To further complicate things, the terminology we use for the characterization of hydrozoan morphology has been adapted in many cases from other fields of science (like botany and geometry), and some of the words ended up with very different meanings depending of the organism we are looking at.

But if you are interested in these fascinating creatures, fear not! We at the invertebrate collections have thought about giving you a little visual aid in the form of four plates including some of the basic structures of hydroids and hydromedusa (courtesy of artsprosjekt HYPNO and upcoming artsprosjekt NORHYDRO).

Figure 1: Thecate polyps, like the ones of Aglaophenia harpago, are protected by rigid structures called “thecae” into which the polyp can retract. In many species they live all together forming colonies. Credit: Joan J. Soto Àngel and L. Martell.

Figure 2: Unlike their “protected” relatives, athecate polyps (e.g. those of Pennaria disticha) lack the skeletal protection of the theca, but can also form large colonies with many polyps. Credit: Joan J. Soto Àngel and L. Martell.

Figure 3: The hydromedusae produced by thecate polyps are called leptomedusae, and can be recognized by the development of gonads in the radial canals (among other characteristics). From left to right and top to bottom in the picture are three species present in Norwegian waters: Tiaropsis multicirrata, Modeeria rotunda, and Tima bairdii. Credit: L. Martell and A. Hosia, HYPNO project.

Figure 4: Anthomedusae (hydromedusae produced by athecate polyps) usually have the gonads developed in the manubrium. From left to right and top to bottom in the picture are Leuckartiara octona, Rathkea octopunctata, and Sarsia tubulosa. Credit: L. Martell and A. Hosia, HYPNO project.

Hopefully these images can be used as a starting point for the uninitiated, and why not? perhaps also as a source of inspiration for cool marine-related presents for the season!

-Luis Martell and Joan J. Soto Àngel

Door #1: Last Christmas…

The cushioned sea star, Porania pulvillus, has been recruited to help advertise our little advent enterprise. Click for bigger image!

Last Christmas* we did in fact not make an Invertebrate Advent Calendar, as half the people of the collections were off in South Africa attending the IBOL (International Barcode of Life) conference. You can read more about what we were up to there in this blog post (which is liberally peppered with photos of local vertebrates): The 7th International Barcode of Life (IBOL) conference

However, the year before, and the year before that again, we did hold our own countdown for the 24 first days of December – just like most kids do here in Norway.

We will try to do the same this year, so make sure to check back often for posts on the weird and wonderful critters that live in the sea!

The 2015 edition can be found here, and cover the following topics:

Door #1: A day at sea
Door #2: The Leaf Sheep Sea Slug
Door #3: Prepare to be HYPNOtized
Door #4: A cushioned star
Door #5: A (so far) undescribed species of bristle worm
Door #6: Associated Amphipods
Door #7: Shrimp and salad
Door #8: One jar –> many, many vials
Door #9: Delving into the DNA
Door #10: Old Stoneface
Door #11: Just a white blob?
Door #12: Plankton sampling with a vertebrate view!
Door #13: Time for rejuvenation
Door #14: A world of colour and slime
Door #15: Guest researchers: Ivan
Door #16: First molecular-based phylogeny of onuphid bristle worms
Door #17: A marriage of art and science
Door #18: A photosynthetic animal
Door #19: The amphipods with the pointed hoods
Door #20: How many undescribed bristle worms live in Australian waters?
Door #21: A Norwegian oddity
Door #22: The Heart of the Museum
Door #23: Of MAREANO and the Museum
Door #24: Happy Holidays!

For 2016, this is what we came up with:

Door #1 Gammarus wilkitzkii – closer than Santa to the North Pole?
Door #2: The head of the Medusa
Door #3: a week in the field
Door #4: A spindly Sunday
Door #5: A visit from Mario
Door # 6: Stuffed Syllid
Door # 7: Always on my mind…?
Door #8: the ups and downs of a marine werewolf?
Door #9: Research stay of Juan Moles
Door #10: Siphonophores
Door #11 Invertebrately inspired art?
Door #12: All aboard the jelly cruise!
Door #13: Lucia – with a ray of enlightenment?
Door #14: Where the sun doesn’t shine. Lucifer, luciferin and luciferase
Door #15 Twinkle, twinkle, little animal?
Door #16: Chaetoderma nitidulum- a spiny, shiny mollusc
Door #17: New master student
Door # 18: MSc completed
Door #19: Going back to the roots
Door #20: Pretty Phyllodocidae
Door # 21: A tale of three fading buck-goats
Door #22 A jolly, happy family?
Door #23: How far away can a quill worm get?
Door #24: Happy Holidays!

We hope you will enjoy our little tidbits of invertebrate collections related information!

-Katrine

*you are so very welcome to the ear worm – maybe now I can get rid of it!