Category Archives: Field work

HYPCOP workshop at the IMR fieldstation in Flødevigen

HYPCOP (Hyperbenthic Copepoda) is a young project starting date May 2020 with joined efforts between researchers from the Institute of Marine Research (IMR; Tone Falkenhaug), Natural history museum of Bergen (UiB; Cessa Rauch, Francisca Correia de Carvalho, Jon Anders Kongsrud) and Norwegian Institute for water research (NIVA; Anders Høbæk). If you want to read more about what HYPCOP entails, read it all in our previous blog here: link to HYPCOP kickoff blog.

We were already off with a good start with having quite some fieldwork and sampling done this Summer in and around Bergen, Killstraumen, Lillesand, Drøbak and now with our most recent trip to Flødevigen.  During week 35 (24 – 28 August), all the different researchers from HYPCOP traveled to the IMR fieldstation in Flødevigen to participate in a sampling excursion. It was a special event because it was the very first time since the project started that all the collaborators would meet, in real life! We had many meetings via the digital platforms but working together face to face is quite a different and more pleasant experience (Picture 1).

Team members at the field station; from ltr: Anders Hobæk (NIVA Bergen, Jon Kongsrud (UoB, Tone Falkenhaug (IMR), Cessa Rauch and Francisca de Carvahlo (UoB)

The HYPCOP project is special in many ways; besides the involvement of many different institutes, the team deals with quite a steep learning curve. As off now there are very few hyperbenthic copepoda taxonomists in the world and none in Norway. Anders Hobæk has experience with freshwater copepoda, however his skills are transferrable to the marine species, which helps us a lot. Tone Falkenhaug has experience with copepods from previous projects (COPCLAD; Inventory of marine Copepoda and Cladocera (Crustacea) in Norway). However, the difference between COPCLAD and HYPCOP is the habitat: COPCLAD invented the pelagic realm, while HYPCOP focuses on the Hyperbenthos.

The copepod light trap from Tone Falkenhaug

We decided to use the few days we had together to start from scratch, which meant, first getting some samples from the water.

We all used different techniques to make sure we got copepods from different habitats;

Jon went for snorkeling;

Anders brought his miniature plankton net,

and Tone set her light traps out.

 

This ensured that we had a higher chance of getting different species to look at. Next we would look at our freshly caught samples under the microscope and tried to sort them based on morphotypes (as much as that is possible, as they move fast!).

Copepods can actually have very nice colors! Therefore, we prefer to take live images of the animals as well as when they are fixed on absolute ethanol. So, after sorting them, we continued to make pictures before fixing the animals ready for the next steps.

A colourful specimen, as of yet unidentified

After fixing we experimented with different staining methods in order to make the exoskeleton of the copepods more visible for detecting important morphological features. An important part for species identification is studying the individual body parts of the animals, like the antennae, the individual pair of legs, the claws (maxillipeds).

The animals also have differences between males and females, so it is key to make sure that you identify it as the same species! With morphological identification it is important to also keep some specimens aside for genetic studies. Only when the DNA barcode and the morphological identification agrees we can be certain about the right species identification! As you can read there’s a lengthy process involved before we have the right identification of a copepod specimen and there are hundreds of species described for Norway alone! It is truly very extensive research! Follow us on Twitter and Instagram @planetcopepod to follow our story, or become a member of our planetcopepod Facebook group for the latest news and finding!

See you there!

-Cessa

Scavengers in the ocean

Lysianassoid amphipods from a trap in Raudfjorden, Svalbard. Photo: AHS Tandberg

Most animals are sloppy eaters. They have their favourite piece of food that they go for, and then they leave the rest. This allows for others to pick up where others leave. One of the laws of ecology is that “there is no such thing as an empty ecological niche”. That can be translated to “where there is a food-source (or a place to live) someone or something will use that food-source (or place to live). And that gets us to the sloppy eaters out there, and not least the animals picking up after all the sloppy eaters.

From the pigeons crowding under your cafe-table for your panini-crumbs to the rats in our sewers, our “local scavengers” tend to be animals we feel slightly uncomfortable around. Is it different with the scavengers we dont see so often? It does not seem that way. Vultures  are not the most popular birds, even the word “vulture” has a negative connotation – and we mainly use it in its non-bird meaning.

How about the scavengers of the sea? As on land, we have many different animal-groups that can be classified as scavengers. Many of the marine scavengers are invertebrates (even if some fishes also scavenge). Let us look at the scavenging Lysianassoid amphipods. Are these as little loved in our world as the rats and vultures seem to be?

A typical lysianassoid amphipod. Photo: AHS Tandberg

Lysianassoid amphipods can mostly be distinguished from other amphipods by their “telescope-like” antennae: a very fat inner article with the two next looking like a collapsed old fashioned radio-antenna; two short rings. We know that the antennae of crustaceans are often used to “smell” things in the water – food or mates or possibly even enemies. It is not thought that the radio-antenna-shape of the Lysianassoid antenna specifically has to do with being a scavenger, as other amphipods and indeed several other crustaceans not having such an antenna are also scavengers. But most Lysianassoids have that antennae, and it makes for an easy first-sorting for the scientist. (Getting further – towards a genus, or even species name on the other hand, is not so easy).

Other general traits in most Lysianassoids, are the smooth exterior, and their high swimming abilities. Both are good if you need to get to some leftover food-source fast, and to “dive” into the food-source while not getting stuck through the entry.

Leftovers of bait (polarcod) after 24 hrs in the trap. Not much left for dinner… Photo: AHS Tandberg

And this is where many Lysianassoids loose out when it comes to human appreciation. They seem to love to scavenge on fish caught in fishnets and traps, and both professional and hobby fishers don’t like to share their catch. We dont think it is very appetising to find our fish-dinner “infested” by non-fish. I am quite sure the scavengers being pulled up with their lovely find of dead or dying fish also are not pleased with having to share their dinner with us.

Lysianassoid scavenging amphipods are the focus of our NBIC-financed project NorAmph2. Here, we will collect and register what different species are present in Norway, and we will try to barcode them. These are quite tricky animals to identify properly, but luckily we have teamed up with the best lysianassoid-expert we know – Tammy Horton from the National Oceanography Centre in Southampton, UK.

We use baited traps to collect: put some lovely, smelly fish out there and see who comes to dine. So far, we have collected from Svalbard in the north to Kong Haakon VIIs Hav in the south, and from the intertidal to the deep. They are often many, and the size-variation is great. We look forward to continuing finding out what species we have, and to see if what morphologically seems one species really is (only) one species genetically. (This previous blog-post (in Norwegian) tells the story about one scavenging amphipod that turned out to be 15 (or maybe even more!) separate species)

Anne Helene

Sea slugs of Southern Norway; farewell but not goodbye!

A note from the Norwegian Taxonomy Initiative project (artsprosjekt) “Sea Slugs of Southern Norway” (project home page), which ran from 2018 to the end of April 2020.

Dear all,

The Sea slugs of Southern Norway project reached its terminus at the end of April, with sending the last reports of our collection and research efforts to Artsdatabanken (the Norwegian Biodiversity Information Centre).

What we have been able to build up these last two years is of immense importance for the scientific collections of the Natural History Museum of Bergen (University of Bergen)  and for (Norwegian) biodiversity research.

Sea slugs of Southern Norway managed to collect over 1000 lots covering 93 different sea slug species, of which 19 are new for Norway and a few new to science (we are working on it!).

Below are photos of the species that were collected at different sampling events.  The photos are made either by the researchers associated with the project, or by the amazing team of citizen scientists.

Look at these beauties!

This would absolutely not have been possible without the special effort of our knowledgeable citizen scientists, and we would like to use this opportunity to name a few that were extraordinarily productive during the last years and provided the project and the Museum with valuable samples; Nils Aukan, Roy Dahl, Viktor Grøtan, Heine Jensen, Tine Kinn Kvamme, Runa Lutnæs, Ole Christian Meldahl, Jenny Neuhaus, Bjørnar Nygård, Anders Schouw, Erling Svensen, Cecilie Sørensen, Mona Susanne Tetlie, Anne Mari with Ottesen, Mandal Dykkerklub, Hemne Dykkerklubb, Slettaa Dykkerklubb, SUB-Studentes Undervannsklubb Bergen, Larvik Dykkerklubb, Sandefjord Dykkerklubb, and all the others that made big and small contributions.

A big thank-you to all contributors!

Would you like to know more about the citizen scientists part of the project? Check out this paper (starts on page 23) by Cessa and Manuel: Sea Slugs of Southern Norway: an example of citizens contributing to science.

Mandal team

One of the core components of the projects success was our outreach effort on all kind of social media platforms. During these two years these platforms got much more traffic than we initially thought; apparently we have many Norwegian sea slug fans, within and outside of Norway!

Therefore we decided to continue with our outreach efforts to keep everyone engaged and up to date about these wonderful animals in our ocean backyard, but with some minor adjustments. Some of you might have already noticed a few changes during the last days on the Facebook page  and our Instagram account. From today onward, the social media pages will cover sea slugs of all of Norway, and is now named accordingly. We also welcome a new admin to the facebook group: Torkild Bakken of NTNU University Museum. Welcome Torkild, the more expertise the better, so we are very happy to have you onboard!

We encourage everyone in this community to continue to be active and share your findings and knowledge with other.

Let’s carry on enjoying the wonderful world of sea slugs of Norway!

 

-Cessa & Manuel

 

Field work in Biskopshavn

Happy International Day for Biological Diversity 2020!
On this day, we wanted to share a few glimpses of our most recent field work:

We were finally able to – with some precautions in place – resume our field activities again this Tuesday; we had a lovely day trip in the sun to Biskopshavn, a locality just a few minutes drive away from the lab.

Here we collected animals from the shallow sub-littoral (from just below the tide mark to ~3 m depth) for the new project on Copepoda (see more about that here), and for Invertebrate fauna of marine rocky shallow-water habitats (Hardbunnsfauna).

Below is a short video from the field & lab (including the inevitable Littorina on the lam!), and a few of our findings from the day.

This is a polychaete in the family Syllidae. If you look at the tail end on the top image, you can see that it is about to breed: these animals can do so with schizogamy, which is the production of stolons (enlarged in lower image) which are budded off and become pelagic, swimming away to breed. The stolons form complete new animals, but differ from the stock animal in a number of respects, such enlargement of the eyes, reduction of the gut, and different musculature. The stolons die after breeding.

One of the animal groups Hardbunnsfauna is focusing on is the Bryozoa, or moss animals. Pictured is a Bowebankia spp. Due to COVID we haven’t been able to host our international specialists here this spring. We are amassing a nice collection of animals, and do our best to identify them – we will  begin preparing plates for DNA barcoding soon, and then involve the taxonomists once we have the results.

-Katrine, Cessa & Jon

Meet ZMBN 130407!

How much information do you think we have on the animals in our collections? 🤔

Quite a lot more than you might think, and here to help us show you, we have a small snail from the shore. Meet specimen #ZMBN 130407, a Littorina saxatilis 🐌 (rough periwinkle/spiss strandsnegl).

We collected it one year ago on our fieldwork up North, in Tendringsvika near Tjeldsund (Troms): our northernmost station on the trip.

Tendringsvika in Troms

Here’s a short video of the habitat: notice how the sea urchins dominate once we get below the intertidal zone!

To be able to use the Invertebrate Collections for research, we need to know quite a lot about each animal (“specimen”). Standard information would be where, when and how it was collected, who collected it, who identified it (and revisions), notes about the habitat, images if any, and the museum number that it is registered within our database.

A screenshot of how it may look when a specimen is registered in our database

If there is genetic data – like here, a DNA barcode as part of NorBOL – we also need the genetic information. This information is stored in the international barcode library BOLD (BOLDSystems.org), where it is organised in projects containing information linked to the physical specimen, and to the DNA.

Small snail, much data!

If you look at the lower right corner, you will find information about specimens that have identical DNA sequences, and who are therefore grouped together in what is called a BIN in BOLD (/OTU). Most of the other specimens with identical DNA barcode have also been identified to Littorina saxatilis, but not all…that’s one reason to keep the animals in museum collections, so that identifications can be re-checked if needed 🔬.

Through our project (hardbunnsfauna) on shallow water hard bottom fauna from Norway, we are helping build a good DNA barcode library of species that occur in Norway – with reference (“voucher”) specimens in the scientific collections of the University Museum of Bergen, and with our partner, NTNU University Museum.

-Katrine

Science Communication – Creating Scientific Illustrations

What on earth is this going to become?

I (Katrine) recently attended a course on how we can use illustrations to (better) communicate our science.

The course was offered as a joint effort of four Norwegian research schools: CHESS, DEEP, ForBio and IBA, and I got my spot through ForBio (Research School in Biosystematics).

The course was taught by Pina Kingman, and covered a lot of different topics in four days, from messy drawing with charcoal to using graphic software for digital illustrations:

  • Principles of design and visual communication
  • How to apply these principles to illustration and graphic design, which in turn will inform all visual material you might want to create, including; graphical abstracts, presentation slides, poster presentations, journal articles, graphs, data visualisation, project logos, animations and outreach material.
  • Best practices for poster and slide presentation design
  • Step by step method on how to draw your own research
  • Introduction to sketching by hand
  • Crash course in digital illustration with mandatory pre-course digital tutorials

Now, we were sternly told on day 1 that we were not allowed to say that we could not draw…but let’s say that some people have more of an affinity for it than I do – see above for proof! None the less, a concept was to be developed, discussed and improved during group work, and ultimately transformed into a digital illustration by the end of day 4.

Most of my fellow students were creating something related to their ongoing research, such as an illustration to be used in a paper of their PhD. On the last day we presented our work for the class, and got the final feedback from the group. Spending a whole day looking at cool graphics and learning about people’s work on such varied topics as water flow in magma, colour patterns on Arctic rays, better diagnosis of tuberculosis, and ecosystem modelling was really enjoyable, and the feedback I got was very helpful.

I opted for an outreach-approach, creating a lot of small illustrations that will be individually useful in future presentations and such, and which could be combined into a small comic about our scientific collections. The comic has been shared on Twitter and Instagram (do follow @hardbunnsfauna!), and now here:

The end product of the course; a short introduction to our scientific collections, how we work, and how we integrate data such as DNA-barcodes and morphological traits of the animals to do our research!

Thank you to Pina, Mandy (& the other arrangers), and the class for a wonderful learning environment and a fun couple of days!

-Katrine

Research Internship – Francesco

In the last part of 2019 Francesco Golin collaborated with us as an intern in project NorHydro. Francesco is a student at the University of Algarve, where he is enrolled in the International Master of Science in Marine Biological Resources (IMBRSea). We asked him about his internship and this is what he told us:

During the 2019 autumn semester I joined Luis Martell and Aino Hosia in project NorHydro as a research intern. My research contribution was aimed at finding how many species of the hydrozoan genus Euphysa are present in Norwegian waters, and how to define them morphologically and genetically. Euphysa is a common genus with 22 accepted species, but many of them are not easy to tell apart from each other, which is why we decided to implement an integrative approach for species delimitation including morphological and molecular analyses.

Some of the species of Euphysa occurring in Norway. From left to right: Euphysa aurata, Euphysa flammea, and Euphysa sp

Working on board during the cruise

My first mission as an intern was collecting some samples of Euphysa and other gelatinous organisms. Luckily, the opportunity to do so presented itself during the student cruise associated to BIO325, a course in which I participated as part of my studies at UiB.

During this cruise I used a light table to spot the tiny jellyfishes brought on board by the Multinet, then I placed them on a Petri dish and took pictures of them with a camera attached to a stereomicroscope, before transferring them to an Eppendorf tube filled with ethanol.

All these elements (the pictures of each organism, the associated sampling data, and the samples themselves) are needed for species delimitation of hydromedusae. The pictures are used to compare the morphology of different individuals and to identify important diagnostic characters (unfortunately, ethanol-fixed jellyfish are not useful for morphological analysis), while the ethanol-preserved samples are used to obtain DNA sequences.

The light table used to spot the gelatinous zooplankton

Some siphonophore parts are very transparent, and thus they are some of the most difficult animals to spot in plankton samples.

The hydrozoan Aglantha digitale (left) was very abundant in all my samples. Other cnidarians, such as this anthozoan larva (right) were also present.

My second mission consisted on gathering the original descriptions of the different species of Euphysa. This information is necessary if we want to understand what makes each species different, and will come handy when analyzing the individuals and their pictures collected on the field. Talking about species boundaries, I had the opportunity to attend a course on “Molecular Species Delimitation” offered by the University Museum. In this course I learned how to perform the analysis of DNA sequences for species delimitation, using some common software (MEGA and R) for this purpose. These are important tools that will allow us to assess the diversity of Euphysa in Norway, and together with the morphological analyses these data will help us determine if new species have to be described.

Now the semester has ended and my internship is over. Nevertheless, I hope my help was meaningful, as I want to continue being a part of this research project in the future. I will keep myself updated with the changes in the taxonomy of Euphysa, so I’m sure I will be able to join NorHydro again when I’ll come back to Bergen!

-Francesco

Field season’s end

Sletvik field station, October 15th-23rd 2019

We wanted to make a write-up of the last combined fieldwork/workshop we had in 2019, which was a trip to the marine field station of NTNU, Sletvik in Trøndelag, in late October. From Bergen, Luis (NorHydro), Jon, Tom, and Katrine (Hardbunnsfauna) stuffed a car full of material, microscopes, and drove the ~12 hours up to the field station that we last visited in 2016.Beautiful fall in Trøndelag

There we joined up with Torkild, Aina, Karstein, and Tuva from NTNU university museum, students August and Marte, and Eivind from NIVA. We also had some visitors; Hauk and Stine from Artsdatabanken came by to visit (if you read Norwegian, there’s a feature about it here), and Per Gätzschmann from NTNU UM dropped by for a day to photograph people in the field.

Most of the workshop participants lined up Photo: Hauk Liebe, Artsdatabanken

During a productive week the plan was to work through as much as possible of the material that we and our collaborators had collected from Kristiansand in the South to Svalbard in the North. Some of us went out every day to collect fresh material in the field close to the station.The Artsprosjekts #Sneglebuss, Hardbunnsfauna, NorHydro, and PolyPort gathered at Sletvik, and with that also the University museums of Trondheim and Bergen. Of course we were also collecting for the other projects, and the museum collections.

One of the things Hardbunnsfauna wanted to do whilst in Sletvik was to pick out interesting specimens to submit for DNA barcoding. This means that the animals need to be sorted from the sediment, the specimens identified, and the ones destined to become barcode vouchers must be photographed and tissue sampled, and the data uploaded to the BOLD database. We managed to complete three plates of gastropods, select specimens for one with bivalves, and begin on a plate of echinoderms, as well as sort through and select quite a few crustaceans and ascidians for further study.

Collecting some fresh material was particularly important for NorHydro because the hydroids from the coasts of Trøndelag have not been thoroughly studied in recent years, and therefore we expected some interesting findings in the six sites we managed to sample. We selected over 40 hydrozoan specimens for DNA barcoding, including some common and widespread hydroids (e.g. Dynamena pumila), some locally abundant species (e.g. Sarsia lovenii) and exceptionally rare taxa, such as the northernmost record ever for a crawling medusa (Eleutheria dichotoma). We also used a small plankton net to catch some of the local hydromedusae, and found many baby jellyfish belonging to genus Clytia swimming around the field station.

Plan B when the animals (in this case Leuckartiara octona) won’t cooperate and be documented with the fancy camera; bring out the cell phones!

It was a busy week, but combining several projects, bringing together material spanning all of Norway, and working together like this made it extremely productive!

Thank you  very much to all the participants, and to all the people who have helped us gather material so far!

-Katrine & Luis

Sea slugs from Vestfold

Larvik & Sandefjord 22.10.2019 – 27.10.2019

From October 22 to October 27, Sea slugs of Southern Norway crossed the Hardangervidda mountain pass to pay a visit to Larvik Dykkeklubb (LDK) and Sandefjord Dykkeklubb (SDK). Vestfold, in particularly the Larvik area, was a thorn in the side for the sea slug project. With fieldwork and collection trips covering most of the Hordaland area (Bergen, Espegrend), Rogaland (Egersund), Mandal (Vest-Augder), Drøbak (Oslofjord area) a lot was left to be discovered still for Aust-Agder and Vestfold. Therefore, a visit to Vestfold was very high on our bucket list.

With Winter just around the corner, we decided to squeeze in a short fieldwork trip to Larvik just before the end of 2019. Me and Anders Schouw drived from Bergen to Larvik with our rented caddy to meet up with Tine Kinn Kvamme and members of the LDK. On Tuesday morning, after packing our mobile laboratory in the car, we drove off to Larvik. In the early evening we arrived at the LDK, there we were welcomed by Lene Borgersen from LDK, who facilitated access to the clubhouse for sorting sea slugs during our stay. That evening was also a club members evening, and I took that opportunity to give a presentation about sea slugs and the Sea slugs of Southern Norway project

It was a great evening talking about sea slugs with interested club members while eating pizza! The next day Tine, Anders and I met up with LDK member Mikkel Melsom, who joined to help on our hunting for sea slugs

Picture 2. Some sea slugs from Larvik; from left to right; Limacia clavigera, Edmundsella pedata, Diaphorodoris luteocincta, Tritonia hombergii, Tritonia lineata and Cadlina laevis. Photo credits Anders Schouw

Later that day we met up at the SDK clubhouse with Stein Johan Fongen, where I had the opportunity to once again talk about sea slugs this time to the SDK members. This was a very special evening because among the audience, besides SDK members, we also had students from Sandefjord videregående skole (Sandefjord High School)

Sea slug presentation for students of the Sandefjord videregående skole and Sandefjord Dykkeklubb members. Photo credits Tine Kinn Kvamme

In the following days several members of the SDK also joint us collecting sea slugs. Despite the fact that October is known for being not an ideal season to find sea slugs (most species are observed during Winter and (early) Spring) we still somehow ended up with hours of sorting work at the Larvik clubhouse

Cessa Rauch & Anders Schouw sorting sea slugs in the Larvik clubhouse. Photo credits Tine Kinn Kvamme

Overall, we collected 21 different species, all newly registered specimens for the project with regard to this part of the country. It would be great to see what the species abundance would be during a sea slug season like February or March!

Overview of the species collected at Larvik and the Sandefjord area

Besides sea slugs and enthusiastic club members, another highlight of the week was a visiting seal at SDK! On our last day of fieldwork, a young seal was very bold and decided to rest close to the clubhouse in the harbor. It let people come up really close, which was great for making cute seal pictures. Cherry on the cake, in my opinion!

Young seal in the harbor close to the Sandejord Dykkeklubb. Photo credits Anders Schouw

On Sunday the tree of us had to say goodbye, Tine would go back to her hometown Oslo and Anders and I would cross the snowy mountains again back to Bergen. It was a short but sweet visit and great opportunity to meet members of Larvik and Sandefjord dykkerklubbs. I therefore want to thank LDK and SDK for their interest, enthusiasm and help for the few days Anders, Tine and I were around. I surely hope we will meet again next year, and find many more sea slugs. And of course, thanks to Anders and Tine for helping again, hope we can share many more sea slug adventures together

Left to right; Tine Kinn Kvamme, Cessa Rauch and Anders Schouw in front of the Larvik Dykkeklubb were most of the ‘lab’ work was done. Photo credits Lene Borgersen

More sea slugs: 

Do you want to see more beautiful pictures of sea slugs of Norway? Check out the Sea slugs of Southern Norway Instagram account; and don’t forget to follow us. Become a member of the Sea Slugs of Southern Norway Facebook group, stay updated and join the discussion! Hunger for more sea slug adventures, check our latest blog posts.

Explore the world, read the invertebrate blogs!

– Cessa

Invertebrates in harbours

Harbours and marinas are interesting places to look for marine creatures. These environments are usually teeming with life, but a closer look often reveals that their communities are strikingly different from the ones living in adjacent natural areas. Piers and pontoons offer new surfaces for many algae and animals to grow, and the maritime traffic of large and small boats allow for an intense movement of organisms, making harbours some of the preferred spots for newcomers (what we called introduced species) to settle. Many surprises can be expected when sampling for invertebrates in these man-made habitats, which is why our artsprosjekt NorHydro teamed up with project PolyPorts (based at the NTNU University Museum) to explore the hidden diversity of worms and hydroids in the Norwegian harbours.

I was very happy to collect polyps in sunny Southern Norway.

Last year, PolyPorts sampled extensively in some of the main Norwegian harbours (including Oslo, Bergen, Trondheim, and Stavanger); but for this year’s sampling season our two projects headed first south (to the harbours and marinas of Sørlandet), and then west (to Bergen).

In the south, we sampled several ports and marinas from Kristiansand to Brevik (including Lillesand, Grimstad, Tvedestrand, and Risør, thus covering a large portion of southern Norway). In Vestlandet we concentrated our efforts in the area of the port of Bergen, Puddefjorden and Laksevåg, as well as Dolvika.

 

Although it could be surprising that heavily trafficked (and sometimes quite polluted) harbours support a high diversity of invertebrates, this was actually the case for every single port we surveyed.

All our sampling areas had pontoon pilings and mooring chains covered in colourful seaweeds and animals, and reefs of native and introduced mussels and oysters that provided a home for sea squirts, skeleton shrimps, bryozoans and hydroids. For NorHydro, perhaps the most surprising result came from the brackish areas that we analyzed, where large populations of Cordylophora caspia were found. This species is not native to Norway and had not been observed in so many Norwegian localities before, making for an interesting finding to explore even further through the analysis of DNA.

– Luis

Keep up with the activities of NorHydro here in the blog, on the project’s facebook page and in Twitter with the hashtag #NorHydro.