Category Archives: NorBOL

Bryozoan barcoding

Haeckel Bryozoa.jpg
By Ernst Haeckel – Kunstformen der Natur (1904), plate 23: Bryozoa (see here, here and here), Public Domain, Link You can also find the whole, gorgeous book by Haeckel here, courtesy of the Biodiversity Heritage Library

I have spent the past week and a half getting acquainted with a rather odd – yet beautiful – group of animals, the Bryozoa, moss animals. These colony-forming, mostly marine, animals are small as individuals, but the colonies can grow quite large. Globally there are around 5000 extant species recorded, with a further 15 000 species in the fossil record. We have colleagues in Oslo who work on both the fossil and the current fauna to better understand micro- and macroevolution, you can read more about that here (og her, på norsk).

Sampling site of barcoded Bryozoans in the BOLD database

Sampling site of barcoded Bryozoans in the BOLD database

This is the first attempt at barcoding bryozoans through NorBOL, and it shows (map above); hopefully we will get more dots on the map for our region soon!

This may not be an easy group to get genetic barcodes from, though – I’ve been in communication with several of the (wonderfully helpful!) experts in the field, and the consensus seems to be that getting a barcode (from the region defined as THE barcode, the 5’ end of COI) will be difficult, and that we may anticipate “..a colourful array of contaminants, as well as nuclear mitochondrial pseudogenes”. Yay. Well, we won’t know until we try!

Together with colleagues from the Natural History Collections in Gothenburg we have assembled a plate of tissue samples from Swedish and Norwegian bryozoan that I will send to the CCDB facilities for sequencing next week. We have an impressive 58 different species (1-3 specimens of each) included on the plate, as well as a few specimens that are (not yet) identified to species.

n344_w1150

Bicellariella ciliata for barcoding

Bicellariella ciliata for barcoding

The colonies can be branching, encrusting, lacelike, lumpy…and at times pretty close to invisible! I’ve had to spend some time looking for good illustrations to know what to sample from… there are often multiple species in a jar, as well as other animals – hopefully I managed.

The specimens on the plate

The specimens on the plate

We’re treating this as a trial plate: is it possible to barcode museum material of bryozoans through the general pipeline, or will we need to get creative?

I’ll make a new post once the verdict is in – let’s hope for surprisingly high success rates!


Some further reading:

Lee et al 2011: DNA Barcode Examination of Bryozoa (Class: Gymnolaemata) in Korean SeawaterKorean J. Syst. Zool. Vol. 27, No. 2: 159-163, July 2011 ISSN 2233-7687
DOI 10.5635/KJSZ.2011.27.2.159

Wikipedia has a nice post on Bryozoa

 

Guest Researcher: Joan

Dr Joan Soto from the University of Valencia (Spain), visited us at the museum during August/September 2017 to collaborate with HYPNO on the mysterious issue of linking hydroids and their medusae. We asked him about his experience, and got the following:

Joan, ready to go jelly-hunting under the blue sky!

Joan, ready to go jelly-hunting under the blue sky!

Imagine a caterpillar and its butterfly described as different species by the scientific community. Now think on how confusing it would be if everybody kept calling them with different names over centuries. Well, this is the case of many hydroids and their corresponding medusae!

Hydrozoans, together with other well-known animals such as corals, anemones and jellyfishes, are included within the Phylum Cnidaria. Most hydrozoans are metagenetic, which means that they alternate between asexual (the polyp, usually benthic) and sexual (medusae, usually pelagic) stages in their life. Since the early works by Linnaeus in the mid-18th century, the very first scientists who showed interest in hydrozoans specialized primarily in a single stage of their life cycle, often neglecting the other, and even those courageous scientists who accepted the challenge of studying both groups were unable to discover the correspondence between such different animals as the polyp and the medusa.

Nowadays, in the era of molecular tools, new techniques are revealing that things are not what they seem, neither do they look like what they really are. Thanks to project HYPNO, several links between polyps and medusae have been found, with the subsequent adjustment in their ID (a.k.a. their scientific name), but that is not all! New evidences are bringing to light that some hydrozoans, even if they are morphologically identical to each other, in reality belong to different species, a fact known as “cryptic species”.

Both of these phenomena may be involved in the taxonomic confusion surrounding the hydroid Stegopoma plicatile and the medusa Ptychogena crocea, the former a worldwide reported species, the latter a Norwegian endemism. How can a medusa be so restricted in distribution while its hydroid lives everywhere? Perhaps now we know the answer thanks to molecular tools: Stegopoma plicatile may represent a complex of species, hiding a misunderstood diversity, and similar S. plicatile hydroids may produce different Ptychogena medusae. In other words, perhaps the polyp does not have such a wide distribution, and records from other parts of the world should be re-examined in detail, paying special attention to the tiniest and easily overlooked details of its morphology. But of course this is a job only for very patient detectives…

Hydroids of Stegopoma plicatile (like this one) from all over the world look very similar to each other, but may produce very different medusae.

Hydroids of Stegopoma plicatile (like this one) from all over the world look very similar to each other, but may produce very different medusae.

These beautiful medusae of Ptychogena crocea collected in Korsfjord were sexually mature. You can see the four gonads as folded masses of yellow tissue in each jellyfish.

These beautiful medusae of Ptychogena crocea collected in Korsfjord were sexually mature. You can see the four gonads as folded masses of yellow tissue in each jellyfish.

Thus, this was the objective of my recent visit to the Bergen University Museum. An outstanding month surrounded by enthusiastic scientists, amazing landscapes, restricted doses of sun, and upcoming challenges: we trust that current and future analyses combining both molecular and morphological taxonomy will lead to settle the correspondence of Stegopoma hydroids with other Ptychogena-like medusae from all over the globe, or even to the description of new species to science!

Deploying the net with help of the crew from RV "Hans Brattstrøm"

Deploying the net with help of the crew from RV “Hans Brattstrøm”

Team-work during the sampling makes everything a lot easier!

Team-work during the sampling makes everything a lot easier!

The amazing crane of the RV "Hans Brattstrøm" allowed us to efficiently hunt for jellyfish at the fjords.

The amazing crane of the RV “Hans Brattstrøm” allowed us to efficiently hunt for jellyfish at the fjords.

This is what our samples look like when we finally get to look at them on board

This is what our samples look like when we finally get to look at them on board

-Joan

Getting back in business

The blog has been quiet over summer – but we’ve been busy!

The #AnnelidaCourse2017 came to an end, and happy participants went back to their home institutions with a lot of new knowledge, a increased contact network, and many new friends.

a)Students working in the lab; b) Picking interesting animals from the samples onboard R/V Hans Brattström; c) Animals to be studied; d) Group photo of most of the participants; e) Detailed study and drawing of a specimen; f) Field work onboard R/V Aurelia Fotos: K.Kongshavn (a,b,e), G. Kolbasova (c), G.Jolly (d), S. Rosli (f)

a) Students working in the lab; b) Picking interesting animals from the samples onboard R/V Hans Brattström;
c) Animals to be studied; d) Group photo of most of the participants; e) Detailed study and drawing of a specimen; f) Field work onboard R/V Aurelia Fotos: K.Kongshavn (a,b,e), G. Kolbasova (c), G.Jolly (d), S. Rosli (f)

Heaps (HEAPS!) of samples have been cataloged and labeled, DNA-sequencing has completed on the shipment we sent in June and we’re working on analyzing the results, and samples from the cruises we particpated on have and are being sorted.

The next shipment of animals to be barcoded through NorBOL is being assembled – of marine invertebrates from our collections, one plate of polychaetes and one plate of isopods have been prepared, and we plan on completing a few more plates before shipping in October.

Isopods for barcoding - these have all been collected and identified by the MAREANO project. Photo: K.Kongshavn

Isopods for barcoding – these have all been collected and identified by the MAREANO project. Photo: K.Kongshavn

We will also get contributions from several of the Norwegian Taxonomy Initiative projects (Artsprosjekt) that are running, and a plate with insect samples made by the students of BIO233 (I was down there today giving them an introduction to barcoding, NorBOL and the BOLD database) – hopefully we’ll get good results on all of it.

-Katrine

Sognefjorden cruise May 2017

After our week with SponGES on R/V Bonnevie, Luis and I had a night back in Bergen before we headed out on our second spring adventure: a four day cruise (still onboard Bonnevie) of Sognefjorden, the longest (205 km) and (deepest 1308 m) fjord in Norway.

The cruise, led by Prof. Henrik Glenner from the Institute of Biology, UoB,  was a multi-purpose one, with the majority of the projects being linked to the Norwegian Taxonomy Initiative (Artsprosjekt):

We collected material for the ongoing project that is investigating and mapping the barnacle fauna (Crustacea: Cirripedia) in Norway, which a special focus on the strange, parasitic barnacle Anelasma squalicola that is found on the shark Etmopterus spinax (velvet bellied lantern shark/svarthå).

The material we collected will also serve as an addendum to the project on Species inventory and nature type mapping of Sognefjorden, which was recently concluded.

As for the University Museum, Luis was onboard collecting pelagic and benthic Hydrozoa for the HYPNO-project, whilst I was on the hunt for more species for DNA-barcoding through NorBOL (the Norwegian Barcode of Life). We have also re-sampled some polychaete type localities from the 1970’s, and attempted to retrieve more material from stations where we have found new species in more recent material (we need more specimens before we can formally describe them).

In addition, we had two Danish researchers onboard that were studying the bioluminescence and eye development of the starfish family Brisingidae. The story told in images:

We should maybe also add "one of the most gorgeous" to the description of the fjord

We should maybe also add “one of the most gorgeous” to the description of the fjord

Velvet belly lanternshark, Etmopterus spinax

Velvet belly lanternshark, Etmopterus spinax

Henrik and Christoph sorting a shrimp trawl catch on deck

Henrik and Christoph sorting a shrimp trawl catch on deck

Eager pickings in the trawl catch

Eager pickings in the trawl catch

Not all trawl samples go according to plan... this one, taken in the open sea, ended up sampling *a bit* deeper than intended, so we got a lot of benthic animals - and mud. So. much. mud.

Not all trawl samples go according to plan… this one, taken in the open sea, ended up sampling *a bit* deeper than intended, so we got a lot of benthic animals – and mud. So. much. mud.

Most novel sampling gear yet? Collecting velvet belly lanternshark by monkfish!

Most novel sampling gear yet? Collecting velvet belly lanternshark by monkfish! (caught in the “benthic” trawl)

The brisinga sea stars are very fragile - and live deep down.

The brisinga sea stars are very fragile – and live deep down.

We amanged to get some not-too-damaged specimens with a small trawl

We manged to get some not-too-damaged specimens with a small trawl

The plankton net going our for collecting

The plankton net going our for collecting

Luis an Marie studying a plankton sample

Luis an Marie studying a plankton sample

Plankton

Plankton

For some reason, my samples seems to involve inordinate amounts of mud - good thing I had good helpers to work through it all!

For some reason, my samples seems to involve inordinate amounts of mud – good thing I had good helpers to work through it all!

Cruising in a postcard!

Cruising in a postcard!

Sadly, plastic pollution was prevalent in Sognefjorden as well - here's a soda bottle from a sample taken at 911 m depth

Sadly, plastic pollution was prevalent in Sognefjorden as well – here’s a soda bottle from a sample taken at 911 m depth

And here are som eof the plastic that we ended up with from our sampling, most of it from over 1000 meters depth.

Here is some of the plastic that we ended up with from our sampling, most of it recovered from over 1000 meters depth.

Our final night of the cruise was spent in the mud and the sunset - it's starting to become a recurring theme!

Our final night of the cruise was spent in the mud and the sunset – it’s starting to become a recurring theme!

Once again, thank you so much to the crew on Bonnevie for all their help!

Once again, thank you so much to the crew on Bonnevie for all their help!

-Katrine

Fieldwork with the SponGES project on R/V Kristine Bonnevie – part II

I wanted to write a bit more abou the SponGES cruise, as we are currently entering Sognefjorden on the second spring cruise Luis and I have managed to sign up for (what a job!).

SponGES took us to Korsfjorden, Bømlafjorden, west of Bømlahuken and finally past Fedje and back to Bergen. We ended up with ~70 stations, using grabs, Agassiz trawl, plankton net, RP-sledge and ROV. For the most part the gear performed admirably, though we had some mishaps (and an epic final station, key word being MUD – Anne Helene will have more to say about that one).
The first grab of the new cruise is going down, so I have to be quick; here’s SponGES in pictures (not recorded: lots of laughs and horrible songs)

Fieldwork with the SponGES project on R/V Kristine Bonnevie

20170428_143104

Greetings from the big, old blue!

We don’t have much internet out here, so updates will be sporadic – but here’s the tale of the first half of the two cruises that the Invertebrate Collections people have stowed away on this spring. The current cruise is part of the SponGES-project that is being coordinated by the University of Bergen, Norway (prof. Hans Tore Rapp).

We are currently midway in the six-day cruise (26th of April to 2nd of May), and are presently to be found at 59°63,000 N, 04°42,000 E – there are mountains on one horizon, and open ocean on the other. After a night of muddy (clay-y) sampling, the majority of us are relaxing and eagerly awaiting lunch, whilst some of the sponge-folks are huddled inside the big, blue container on the deck, surveying the sea floor with the ROV Aglantha (occasionally cherry-picking sponges with fancy scoops).

The ROV Aglantha, inside the Blue Box, and sponge-capturing device

The ROV Aglantha, inside the Blue Box, and sponge-capturing device

At present we are at station #33; it has been three busy days so far! This is the first trip for all of us on the “new” R/V Kristine Bonnevie (formerly known as “Dr. Fritjof Nansen”, but that name has passed on to the new Nansen vessel), and we’re thoroughly enjoying it. The crew is amazing, the food is delicious, and the samples keep coming – what’s not to like? Even the weather has been good to us most of the time – though we have sprouted quite a crop of anti-seasickness patches onboard by now!

#bestoffice

#bestoffice

We had to take a break to admire this

We had to take a break to admire this

Shenanigans on deck

Shenanigans on deck

In addition to the ROV, we are using van Veen grabs, Agassiz trawl, plankton net, and RP-sledge to collect fauna. We also stumbled across hundreds of meters of lost fishing line when diving with Aglantha – the operators were able to catch an end of it, and it was dragged onboard to be discarded properly. The rope was heavily colonized by sponges, hydrozoa and mussels, so we got a “bonus sample” from that – and we got to clear away some marine pollution. Win/win!

Old Fishing line being removed - and samples taken from it!

Old Fishing line being removed – and samples taken from it!

My main incentive for being onboard is to secure ethanol-fixed (=suitable for DNA work) material from locations that we have either none or only formaldehyde fixed. This will then become part of the museum collections – and we will have fresh material for DNA barcoding through NorBOL.

Ready to dive in!

Ready to dive in!

The art of washing grab samples - get rid of the mud, keep the animals intact!

The art of washing grab samples – get rid of the mud, keep the animals intact!

Scooping up top sediment from grabs for analyses

Scooping up top sediment from grabs for analyses

Incoming trawl

Incoming trawl

Sampling in the sunset

Sampling in the sunset

The samples we are collecting are gently and carefully treated on deck before being bulk (i.e. unsorted) fixated in ethanol. There is lab space onboard, but we don’t have the time to do much sorting here. It will be exciting to see what we find once we get back to the lab and begin sorting it!

Lab facilities onboard

Lab facilities onboard

But before we get to that, we have three more days with SponGES, and then we go on to the next cruise, which will also be with Bonnevie – this time we’re heading up and into the Sognefjord.

Stay tuned for updates!

-Katrine

ps: SponGES’ facebook page is here

AmphipodThursday: IceAGE-amphipods in the Polish woods

img_2610This adventure started 26 years ago, when two Norwegian benthos researchers (Torleiv Brattegard from University of Bergen and Jon-Arne Sneli from the University in Trondheim) teamed up with three Icelandic benthos specialists (Jörundur Svavarsson and Guðmundur V. Helgasson from University of Iceland and Guðmundur Guðmundsson from the Natural History Museum of Iceland) to study the seas surrounding the volcanic home of the Nordic sages. 19 cruises and 13 years later – and not least lots of exciting scientific findings and results the BioICE program was finished.

But science never stops. New methods are developed and old methods are improved – and the samples that were stored in formalin during the BioICE project can not be used easily for any genetic studies. They are, however, very good for examinations of the morphology of the many invertebrate species that were collected, and they are still a source of much interesting science.

Participants of the IceAGE workshop. Photo: Christian Bomholt (www.instagram.com/mcb_pictures)

Participants of the IceAGE workshop. Photo: Christian Bomholt (www.instagram.com/mcb_pictures)

The dream about samples that could be DNA-barcoded (and possibly examined further with molecular methods) lead to a new project being formed – IceAGE. A large inernational collaboration of scientists organised by researchers from the University of Hamburg (and still including researchers from both the University of Iceland and the University of Bergen) have been on two cruises (2011 and 2013) so far – and there is already lots of material to look at!


This week many of the researchers connected with the IceAGE project have gathered in Spała in Poland – at a researchstation in woods that are rumoured to be inhabited by bison and beavers (we didn´t see any, but we have seen the results of the beavers work). Some of us have discussed theories and technical stuff for the papers and reports that are to come from the project, and then there are “the coolest gang” – the amphipodologists. 10 scientists of this special “species” have gathered in two small labs in the field-station, and we have sorted and identified amphipods into the wee hours.

It is both fun and educational to work together. Everybody have their special families they like best, and little tricks to identify the difficult taxa, and so there is always somebody to ask when you don´t find out what you are looking at. Between the stories about amphipod-friends and old times we have friendly fights about who can eat the most chocolate, and we build dreams about the perfect amphipodologist holiday. Every now and then somebody will say “come look at this amazing amphipod I have under my scope now!” – we have all been treated to species we have never seen before, but maybe read about. We also have a box of those special amphipods – the “possibly a new species”- tubes. When there is a nice sample to examine, you might hear one of the amphipodologist hum a happy song, and when the sample is all amphipods but no legs or antennae (this can happen to samples stored in ethanol – they become brittle) you might hear frustrated “hrmpfing” before the chocolate is raided.

 

Isopodologists (Martina and Jörundur) visiting the amphipodologists... Photo: AH Tandberg

Isopodologists (Martina and Jörundur) visiting the amphipodologists… Photo: AH Tandberg

The samples from IceAGE are all stored in ethanol. This is done to preserve the DNA for molecular studies – studies that can give us new and exciting results to questions we have thought about for a long time, and to questions we maybe didn´t even know we needed asking. We can test if what looks like the same species really is the same species, and we can find out more about the biogeography of the different species and communities.

The geographical area covered by IceAGE borders to the geographical area covered by NorAmph and NorBOL, and it makes great sense to collaborate. This summer we will start with comparing DNA-barcodes of amphipods from the family Eusiridae from IceAGE and NorAmph. They are as good a starting-point as any, and they are beautiful (Eusirus holmii was described in the norwegian blog last summer).


Happy easter from all the amphiods and amphipodologists!

Anne Helene


Literature:

Brix S (2014) The IceAGE project – a follow up of BIOICE. Polish Polar Research 35, 1-10

Dauvin J−C, Alizier S, Weppe A, Guðmundsson G (2012) Diversity and zoogeography of Ice−
landic deep−sea Ampeliscidae (Crustacea: Amphipoda). Deep Sea Research Part I: 68: 12–23.

Svavarsson J (1994) Rannsóknir á hryggleysingjum botns umhverfis Ísland. Íslendingar og hafiđ.
Vísindafélag Íslendinga, Ráđstefnurit 4: 59–74.
Svavarsson J, Strömberg J−O,  Brattegard T (1993) The deep−sea asellote (Isopoda,
Crustacea) fauna of the Northern Seas: species composition, distributional patterns and origin. Journal of Biogeography 20: 537–555.

Aliens amongst us?

It certainly does not take a great leap of imagination to get from these Isopoda collected by the MAREANO programme to various science fiction monsters!

isopoda_images_resized

click to embiggen!

I just completed photographing and tissue sampling 95 specimens that will be submitted for barcoding through NorBOL  – we’ll send them to the CCDB-lab in Canada for sequencing, and upload the metadata and sequences in the BOLD database – fingers crossed for successful sequencing!

Plastic: The true junk food of the oceans

A whale recently had to be put down by wildlife management after it had repeatedly beached itself on the island of Sotra outside of Bergen. It was found to be a Cuvier’s beaked whale (Ziphius cavirostris), a species with apparently no official previous records from Norway. The University Museum of Bergen therefore wished to include the whale skeleton in its collections (and future exhibitions, once the remodelling completes).

Arriving at Espegrend

Arriving at Espegrend

The whale was transported to the Marine Biological Station of Espegrend, and a team of five people from the museum set to work collecting measurements of the whale, taking tissue samples for DNA-barcoding though the NorBOL-project, collecting ectoparasites, and doing photo-documentation.

Collecting measurements

Collecting measurements

We then began removing the blubber and muscle tissue off the whale so that the bones can be further treated (they contain a lot of oil which needs to be taken care of once the soft tissue has been removed), before the skeleton can be mounted for display.

Starting the work of removing blubber and muscles

Starting the work of removing blubber and muscles

Little did we know that what had so far been a local news matter would soon go viral…

Sadly, it became clear during the autopsy that the whale had been ingesting massive amounts of plastic – as much as 30 plastic bags, and many smaller pieces of plastic. The whale was emaciated, and we believe that the plastic had gathered in such an amount in its stomach that it had created a plug, stopping the digestive process.

The plastic and and from the whale stomach

The plastic in and from the whale stomach (photos: T. Lislevand, H.Glenner/C.Noever)

The images of all the plastic spread out on the ground became a potent reminder of the tragedies that marine pollution is creating, and has sparked a renewed debate on how we can limit the amount of micro- and macro-plastic that end up in nature.

The news of the whale's stomach content became international news

The news of the whale’s stomach content became international news

What should the Cuvier’s beaked whale have been eating?

Occurring as solitary animals or in small pods, and preferring the deeper open waters, the Cuvier’s beaked whale is not an easy animal to study. We do know that the species have a more or less cosmopolitan distribution, and that it holds the world record for longest and deepest dive for any mammal: one was recorded diving down to 3000 meters.

What data we do have on the species diet comes from beached individuals, and suggests that the species may be a fairly omnivorous predator. From the limited number of Cuvier’s beaked whales that have been examined for stomach content, there are regional differences in the diet, but it seems to consist mainly of cephalopods (squid and octopuses), deep sea fish, and medium sized crustaceans (Santos og andre 2001).

Above are the suckers on the arm of a giant squid, Architeuthis. Below are scars on the skin of a sperm whale. Photo: E.Willassen

Above are the suckers on the arm of a giant squid, Architeuthis. Below are scars on the skin of a sperm whale. Photo: E.Willassen

The cephalopods appear to be the dominant food source, but this interpretation may be influenced by the longevity of the hard parts of a cephalopod in the stomach.

The tough beaks of a cephalopod consist of chitin, and is used for tearing prey to pieces. Chitin is also found in the suckers of many cephalopods. The beaks can be used to identify the cephalod groups based on their size and shapes.  Animals such as jellyfish would be much harder to document as part of the diet, as they would be digested much more rapidly and completely.

We don’t know how well resolved the information produced by the animal’s echo-location is, but it is conceivable that the plastic reflects signals in a way similar to the natural food of the whale, and is therefore “caught” and eaten.

Cephalopod beak, drawing by J.H. Emerton from Wikimedia commons

Cephalopod beak, drawing by J.H. Emerton (from Wikimedia commons)

We did find some cephalopod beaks in between the plastic in the whale stomach – so far we have not had the time to attempt to identify these, but we will.

Amngst the plastic there are some cephalopod beaks and a bivalve shell. Photo: C. Noever

Amongst the plastic there are some cephalopod beaks (dark brown) and a bivalve shell (top left). Photo: C. Noever

The University Museum have extensive cephalopod collections, and long traditions for working with this group – from Dr. Jakob Johan Adolf Appellöf who began working here in 1890, to the material collected in the MAR-ECO project.

MAR-ECO workshop on cephalopoda

MAR-ECO workshop on cephalopoda

From the work of  Santos et al 2001 we know that the following species are in the diet of European Curvier’s beaked whales, and are probably amongst the things our whale should have been eating:

Tewuthowenia megalops. Photo: Richard E. Young during MAR-ECO-cruise 2004.

Tewuthowenia megalops. Photo: Richard E. Young during MAR-ECO-cruise 2004.

Teuthowenia megalops is an odd squid that floats around in the open water with a propulsion system based on ammoniumchloride that the animal produces by digesting protein. The name “megalops” hints to the huge eyes, which also contain three light producing organs (chromatophores). The species seems to be common in deep water in the north Atlantic (Vecchione et al. 2008). For more information, see Wikipedia.

 

mastigoteuthis_agassizii1

Mastigoteuthis agassizi

 

Mastigoteuthis agassizii was originally registered in whale stomachs as Mastigoteuthis schmidti, but from the work on the MAR-ECO project, three species of Mastigoteuthis were considered to all be M. agassizii. Some ambiguity remains about the species of this genus of oceanic squid with a broad distribution in the world’s oceans in depths ranging from 500 to 1000 meters. They have diurnal migration, and may be found hunting closer to the surface at night.  

 

 

 

Taonius pavo. Illustration from Wikipedia.

Taonius pavo seen ventrally (above) and dorsally. Illustration from Wikipedia.

Taonius pavo 

This little squid is not very well known. It has been recorded from the Atlantic Ocean, but it may have a broader distribution. In this link you will find a video from the Bahamas at 850 m depth where the animal releases bio- luminescent “ink” to confuse a predator and escape.

 

Histioteuthis bonelli Photographed by Richard E.Youngduring the Mar-Eco-cruises in 2004

Histioteuthis bonelli Photographed by Richard E.Young during the Mar-Eco-cruises in 2004

Histioteuthis bonelli by Ernst Haeckel.

Histioteuthis bonelli, drawing by Ernst Haeckel.

 

Histioteuthis bonnellii has several names in English, one of which is “umbrella squid”. The name is due to the skirt-like membrane between the arms – when it splays its arms it resembles an umbrella. We don’t know much about the biology of H. bonellii, except  that it has several close relatives in the world oceans, and that what has hitherto been considered one species (H. bonellii) may well turn out to be several species.

 

 

Todarodes sagittatus

Todarodes sagittatus

 

Todarodes sagittatus, the European flying squid, is one of the ten-armed cephalopods that may irregularly occur in schools along the Norwegian coast. T. sagittatus is subject to fisheries.

 

 

 

 

vampyroteuthis_-etter-chun

Vampyroteuthis infernalis

Vampyroteuthis infernalis  – the vampire squid is a deep-sea squid with eight arms and a skirt-like mantle between its arms. It also has moveable wings on its body that it can use to manoeuvre with. The name “vampire squid” is not quite true – this is no blood sucker, but it traps organic material from the water masses using long, sticky threads. If threatened, it can invert the “skirt” over its head, resembling a hedgehog. It also has light producing organs towards the back of the body, and can create clouds of bioluminescence. Even with all these defences, it may end up in the stomach of a Cuvier’s beaked whale.

Below are a couple of videos of  V. infernalis:

youtube 1 (same as above)
youtube 2
youtube 3
youtube 4

Other prey

Pelagic crustaceans and deep sea fish are also amongst the recorded prey from Cuvier’s beaked whales. Amongst these we find the fairly large and shrimplike Gnathophausia, found within the order Lophogastrida, which has been studied extensively at the University of Bergen. We also found a bivalve shell in the stomach of our whale, which as far as we are aware of has not been recorded as part of their diet previously.

Plastic or food?

It may seem strange that the whale should ingest large amounts of plastic – why would it do that? If the whale primarily finds its pray by echolocation in the pitch black of the deep sea, it may well be that it is unable to differentiate between the reflected signal from a sheet of plastic, and that from one of its usual prey animals.

Unlike the sperm whales that hunt cephalopods in a similar way, the beaked does not have teeth to grab its pray. Instead they use a suction to ingest the food. Perhaps it is this feeding mode that becomes very unfortunate for the whales in a natural environment with an incredible amount of human garbage.

-EW & Katrine

Door #20: Pretty Phyllodocidae

Today we present two more of Arne Nygrens gorgeous photos, that he made during our week in the field in Sletvik (central Norway). The subjects in both of these are polychaetes from the family Phyllodocidae, the paddleworms.

First up is a stunning Phyllodoce citrina collected from shell sand at about 60 m depth. The animal is approximately 6 cm long.

Phyllodoce citrina, Photo by Arne Nygren CC-BY-SA

Phyllodoce citrina, Photo by Arne Nygren CC-BY-SA

The next one, Paranaitis sp. n.  is actually a new species for science, which came as a pleasant surprise. This is a fairly well-studied group, and the locality Galgenes is one that has been sampled regularly – yet there it was! It is rather unusual to find species where one can so immediately recognize that they are something new; usually we need many specimens, and a combination of detailed studies of morphology and genetic work – but this one is possible to distinguish straight from morphology, as it was lacking eyes.  The specimen is about 1.5 cm long.

Paranaitis n sp Photo by Arne Nygren CC-BY-SA

Paranaitis n sp Photo by Arne Nygren CC-BY-SA

-Arne & Katrine