Category Archives: Uncategorized

Master theses completed!

Photo: Cessa Rauch

Big congratulations to all of out master students who have
completed their thesis so far in 2025!
Well done, Amalie, Lea, Eva, Maria, and Joe!

Lawrence, Joseph C.  (Master thesis, 2025, UiB): Bipolar or multiple species disorder? Examining the potential cryptic diversity of Ptychogastria polaris

Buhaug, Maria Grankvist (Master thesis, 2025, NTNU): Diversity and Distribution of Cyclostomatida (Bryozoa).  An Integrative Approach to Increasing Knowledge on a Neglected Taxon in Norwegian and Adjacent Waters

Samson, Eva Charlotte (Master thesis, 2025, UiB): Genetic and morphological diversity of Bylgides (Polynoidae, Annelida) in the Arctic 

DoberLea Sophie (Master thesis, 2025, UiB): Diversity and Dynamics of Parasites Associated with Arrow Worms (Chaetognatha) in Norwegian waters 

Johannessen, Amalie (Master thesis, 2025, UiB): Fauna of Ægir Hydrothermal Vent Field

We have a blog for potential master thesis topis and records of our alumni, you find it here:

Marine Masters at the University Museum of Bergen – – available thesis topics in marine biodiversity

Meet the Museum’s marine biologists during One Ocean Week

It is once again time for One Ocean Week in Bergen,  5th-11th of April 2025. You can read more about the event on the home page. 

The University museum will participate in several ways, one of them is that you can come and meet most of our “marine team” during the Family Day outdoor event!

Date: 06 April
Time: 12.00–16.00 CET
Location: Festningskaien, Bergen (map link)
Open for all, and free of charge! 

Black background, main feature is a shark jaw with the text "meet the marine biologists if the university museum and the animals they study", and various invertebrate animas (a snal, a jellyfish, a yellow worm and a pink crustacean) dotted about

Photos: Joan J. Soto-Angel (UiB), Katrine Kongshavn (UiB), Ross Robertson (Smithsonian Tropical Research Institute, Panama)

Marine biologists from the department of Natural History at the University Museum will be on stand, ready to tell you all about sharks, jellyfish, and less known animals like the bristle worms and snails.

There will be several activities; you can try our quizzes, test out our new board game, be a jellyfish doctor, learn more about bipolar animals living on the North- and South poles!

We’re happy to run the activities in both Norwegian and English (and can between us cover about 8 other languages too 😊). Hope to see you there!

Free seminars at the University Museum during OneOceanWeek

Make sure to check out the seminars that are happening this week (April 16th-19th)!

Researchers from the Department of Natural History give 30 minute lectures on selected topics in the marine realm each day at 14:00, read more about it here!

LINK: https://www.uib.no/en/universitymuseum/169739/welcome-one-ocean-seminars-university-museum

Topics, dates and times:

Who eats whom? Marine worms with jaws – delicious and dangerous! 16.04.2024 – 14.00–14.30

Jellyfish in Norway – mostly harmless or murderous monsters? 17.04.2024 – 14.00–14.30

Sharks of Norway 18.04.2024 – 14.00–15.00

Elusive biodiversity: a journey through the less known but most exquisite groups of marine animals 19.04.2024 – 14.00–14.30

Where: Natural History Museum (Forhandlingsrommet), at Muséplassen 3 (use the main entrance of the Museum).

Free entrance, pick up your ticket from the museum gift shop 15 minutes before start.

Sled test for copepods

R.P. sled onboard R/V. H. Brattström

Happy new year to everyone! We managed to start 2021 with a day at sea, testing the R.P. sled for collecting benthic copepods from greater depths . January 27 we went out with research vessel Hans Brattström, crew and research scientist Anne Helene Tandberg who also turns out to be a true sled expert! She would join HYPCOP to teach how to process the samples from the R.P. sled on the boat.

 

 

 

 

Anne Helene Tandberg (left) joining HYPCOP (Cessa Rauch right) for teaching how to use the sled.

But first, what is an R.P. sled and why is it such an important key in the collection of copepods? The R.P. sled is an epibenthic sampler. That means that it samples the epibenthic animals – the animals that live just at the top of the (soft) seafloor – and a majority of these are often small crustaceans. The “R.P.” in the name stands for Rothlisherg and Pearcy who invented the sled. They needed to collect the juveniles of species of pandalid shrimp that live on the sea bottom floor. These animals are very small so a plankton net was necessary to collect them; a ‘normal’ dredge would not quite cut the job. They needed a plankton net that could be dragged over the bottom without damaging the net or the samples and also would not accidently sample the water column (pelagic); and so, the R.P. sled was born. This sled was able to go deeper than 150m, sample more than 500m3 at the time and open and close on command which was a novelty in comparison to the other sleds that where used in those days (1977). The sled consists of a steel sled like frame that contains a box that has attached to it a plankton net with an opening and closing device. The sled is heavy, ca. 150kg, and therefore limits the vessel sizes that can operate it; the trawl needs to be appropriately equipped including knowledgeable crew. It is pulled behind the vessel at slow speed to make sure the animals are not damaged and to make sure it does not become too full of sediment that is whirled up.

 

 

Sieved animals from the decanting process

So off we went with r/v Hans Brattström pulling the heavy gear at ca. 700m depth with 1 knot and a bottom time of 10 minutes sampling the Krossfjorden close to Bergen. It was a beautiful day for it with plenty of sun and calm seas. The crew handled most of the sled, leaving sorting the samples up to HYPCOP under the guidance of Anne Helene. Which is not as straight forward as it may sound! The process of filtering the samples after collecting them from the sled is done by decanting, which you can see in this movie from an this blog (in Norwegian) from earlier.

Decanting set-up for R.P. sled samples

Decanting means separating the mixture of the animal soup from the liquid by washing them in a big bucket, throw the liquid through a filter and collect the animals.

Sieved animals from the decanting process

This all needs to be done with care as the animals are often very small and fragile. After collecting, the most time-efficient and best preservation for the samples is to fixate them immediately with ethanol, so they don’t go bad while traveling back to the museum.

Fixating collected animals with technical ethanol

For collecting copepods we use a variety of methods; from snorkeling, to scoping up water and plankton nets, but for greater depths and great quality benthic samples the R.P. sled will be the most important method. We thank Anne Helene for her wisdom and enthusiasm that day for showing HYPCOP how to work with such interesting sampling method

 

We got some nice samples that will be sequenced very soon so we can label them appropriately. Although this first fieldwork trip off the year was mainly a teaching opportunity, we still managed to sample two stations with plenty of copepods and lots of other nice epibenthic crustacea, and Anne Helene is especially happy with all the amphipods she collected during the day. So for both of the scientists aboard this was a wonderful day – sunshine and lovely samples to bring back to the lab!

Some fresh copepods caught with the R.P. sled

– Cessa & Anne Helene


Follow HYPCOP @planetcopepod Instagram, for pretty copepod pictures https://www.instagram.com/planetcopepod/

Twitter, for copepod science news https://twitter.com/planetcopepod

Facebook, for copepod discussions https://www.facebook.com/groups/planetcopepod

See you there!

Scavengers in the ocean

Lysianassoid amphipods from a trap in Raudfjorden, Svalbard. Photo: AHS Tandberg

Most animals are sloppy eaters. They have their favourite piece of food that they go for, and then they leave the rest. This allows for others to pick up where others leave. One of the laws of ecology is that “there is no such thing as an empty ecological niche”. That can be translated to “where there is a food-source (or a place to live) someone or something will use that food-source (or place to live). And that gets us to the sloppy eaters out there, and not least the animals picking up after all the sloppy eaters.

From the pigeons crowding under your cafe-table for your panini-crumbs to the rats in our sewers, our “local scavengers” tend to be animals we feel slightly uncomfortable around. Is it different with the scavengers we dont see so often? It does not seem that way. Vultures  are not the most popular birds, even the word “vulture” has a negative connotation – and we mainly use it in its non-bird meaning.

How about the scavengers of the sea? As on land, we have many different animal-groups that can be classified as scavengers. Many of the marine scavengers are invertebrates (even if some fishes also scavenge). Let us look at the scavenging Lysianassoid amphipods. Are these as little loved in our world as the rats and vultures seem to be?

A typical lysianassoid amphipod. Photo: AHS Tandberg

Lysianassoid amphipods can mostly be distinguished from other amphipods by their “telescope-like” antennae: a very fat inner article with the two next looking like a collapsed old fashioned radio-antenna; two short rings. We know that the antennae of crustaceans are often used to “smell” things in the water – food or mates or possibly even enemies. It is not thought that the radio-antenna-shape of the Lysianassoid antenna specifically has to do with being a scavenger, as other amphipods and indeed several other crustaceans not having such an antenna are also scavengers. But most Lysianassoids have that antennae, and it makes for an easy first-sorting for the scientist. (Getting further – towards a genus, or even species name on the other hand, is not so easy).

Other general traits in most Lysianassoids, are the smooth exterior, and their high swimming abilities. Both are good if you need to get to some leftover food-source fast, and to “dive” into the food-source while not getting stuck through the entry.

Leftovers of bait (polarcod) after 24 hrs in the trap. Not much left for dinner… Photo: AHS Tandberg

And this is where many Lysianassoids loose out when it comes to human appreciation. They seem to love to scavenge on fish caught in fishnets and traps, and both professional and hobby fishers don’t like to share their catch. We dont think it is very appetising to find our fish-dinner “infested” by non-fish. I am quite sure the scavengers being pulled up with their lovely find of dead or dying fish also are not pleased with having to share their dinner with us.

Lysianassoid scavenging amphipods are the focus of our NBIC-financed project NorAmph2. Here, we will collect and register what different species are present in Norway, and we will try to barcode them. These are quite tricky animals to identify properly, but luckily we have teamed up with the best lysianassoid-expert we know – Tammy Horton from the National Oceanography Centre in Southampton, UK.

We use baited traps to collect: put some lovely, smelly fish out there and see who comes to dine. So far, we have collected from Svalbard in the north to Kong Haakon VIIs Hav in the south, and from the intertidal to the deep. They are often many, and the size-variation is great. We look forward to continuing finding out what species we have, and to see if what morphologically seems one species really is (only) one species genetically. (This previous blog-post (in Norwegian) tells the story about one scavenging amphipod that turned out to be 15 (or maybe even more!) separate species)

Anne Helene

Door # 8: The DNA-barcode identification machine

In a previous blog post I explained briefly how DNA-sequences are produced for the DNA-barcode library. Now I will show how the BOLD database can be utilized to identify species from sequences.

Some of the equipment used to produce DNA-sequences in our lab.

Say you have access to a lab that can produce DNA-sequences and you have a sample of a crab you cannot identify because some of the key characters are on body parts that have been broken and lost. You produce a DNA-sequence from the “barcode-gene” and open the identification engine in BOLDSYSTEMS.org.

Internet start window for the BOLD identification engine where you paste your unknown DNA sequence into the bottom blank window. (Click on picture to expand)

Having submitted your query to BOLD, you wait for some seconds for results. In this example BOLD returned the following window.

Example of results from a query to the BOLD identification engine. (Click on picture to expand)

The results window lists the top matches in terms of sequence similarity, and in this case we have 100 % similarity match with the crab Atelecyclus rotundatus. There is also an option to display the results as a TREE BASED IDENTIFICATION. When clicking on the option tab, the closest hits are clustered in a so-called Neighbour Joining Tree. In the window below you see parts of the tree where our unknown DNA-sequence has been joined to a group of other sequences in BOLD that have been deposited as Atelecyclus rotundatus barcodes by other biodiversity labs.

Part of TREE BASED IDENTIFICATION of an unknown DNA sequence (in red). We see that the unknown clusters with with other sequence of Atelecyclus rotundatus. The nearest neighbour branch is Atelecyclus undecimdentatus. (Click on picture to enlarge.)

The species page for Atelecyclus rotundatus gives us more information about this crab and about its records in BOLD.

Species page for the individual we identified with the BOLD identification engine. (Click picture to enlarge.)

If in fact your sequence was produced from an unknown crab, this identification seems convincing. But sometimes you should think twice about search results, and this will be the topic of a future blog post.

-Endre

PhD thesis defence

On June 7th Nina Therese Mikkelsen presented her thesis ” Phylogeny and systematics of Caudofoveata (Mollusca, Aplacophora)” for a public audience.  She was questioned by the opponents dr Mikael Thollesson, University of Uppsala, and dr Suzanne Williams, The Natural History Museum of London, and did an excellent performance explaining the results of her studies.

WoRMS is presenting ten astounding marine species of the last decade (2007-2017)

Marivagia stellata, the starry sea wanderer Galil & Gershwin. Photo by Shevy Rothman. CC-BY-NC-SA

As part of the celebration of the first decade of WoRMS – the World Register of Marine Species, ten of the most astonishing new species from the big old blue is given a special presentation here.

 

Artwork of Ramisyllis multicaudata by Sarah Faulwetter

Click your way over and read about the Deep-sea lyre sponge – Chondrocladia lyra, the Palauan primitive cave eel – Protanguilla palau, the Deep-sea acochlidiacean slug – Bathyhedyle boucheti, the Tree syllid worm – Ramisyllis multicaudata, the Starry sea wanderer jelly – Marivagia stellata, the The Hoff crab – Kiwa tyleri, the Squidworm – Teuthidodrilus samae, the Jesse Ausubel’s ‘terrible claw’ lobster – Dinochelus ausubeli, the  ‘living fossil’ octocoral – Nanipora kamurai, and the Scaly-foot snail – Chrysomallon squamiferum. 

Photo by David Shale, CC-BY-NC-SA

Chrysomallon squamiferum, Scaly-foot snail. Photo by David Shale, CC-BY-NC-SA

Link: Ten astounding marine species of the last decade (2007-2017)