Door #8: the ups and downs of a marine werewolf?

When we think about what drives the ecosystems, much of the initial responsibility is put on the sunlight. This is mainly because of the photosynthesis, and thus the basic pieces of almost all food-webs, but light is also important for the animals. Many animals use visual cues to find food, and whether you search for food or do not want to become food, the presence (or absence) of light will help you.

Themisto sp swims up into the dark night. Photo: Geir Johnsen, NTNU

Themisto sp swims up into the dark night. Photo: Geir Johnsen, NTNU

Seawater is a pretty good stopper of light. We don’t need to dive far down before we are in what we consider a dark place, and less and less light finds its way the deeper we come. We tend to call the depths between 200 and 1000 m “the twilight zone”: most light stops way before 200m and the last straggling lumens give up at 1000m.

Most places on earth has a daily division between a dark and a light period: night and day. This is the ultimate reason for what is often called “the largest motion on earth”: Millions of zooplankton hide out in the darker parts of the water column during the day, and then move up to feed on the plants living in the light-affected parts of the water during the night (when predators will have a hard time seeing them). This daily commute up and down is called Diel Vertical Migration (DVM).

Themisto sp among the many smaller particles. (The light in this picture is from a flash). Photo: Geir Johnsen, NTNU

Themisto sp among the many smaller particles. (The light in this picture is from a flash). Photo: Geir Johnsen, NTNU

But what about the waters north of the polar circle? These areas will for some time during the winter have days when the sun stays under the horizon the entire day – this is “the Dark time” (Mørketid). At higher latitudes, there will be several days, or even weeks or months when the sun is so far below the horizon that not even the slightest sunset-glow is visible at any time. In this region, we have long thought that the Dark time must be a dead or dormant time.

 

The acoustic signals that gave the first indications of LVM. Figure 2 from Last et al 2016.

The acoustic signals that gave the first indications of LVM. Figure 2 from Last et al 2016.

We could not have been more wrong! It turns out that during the polar night, the DVM moves from being on a 24 hr cycle (sunlight-induced), to a 24.8 hour cycle! What is now the driver? The moon !(The lunar day is 24.8 hrs). Another thing that shows us that the moon must give strong enough light that predators can hunt by it, is that every 29.5 days most of the zooplankton sinks down to a depth of 50m: this falls together with the moon being full. Researchers have started to call this LVM (Lunar-day Vertical Migration) to show the difference to the “normal” DVM. There are of course lots of complicated details such as the moons altitude above the horizon and its phase that influences the LVM, but in general we can say that during the polar night (the Very Dark time), the “day” as decided by light has become slightly longer than normal.

The full moon, photographed by the Apollo 11 crew after their visit. Photo: NASA, 1969

The full moon, photographed by the Apollo 11 crew after their visit. Photo: NASA, 1969

Themisto - the werewolf. Note that the whole head is dominated by eyes - this is a visual hunter! Photo: Geir Johnsen, NTNU

Themisto – the werewolf. Note that the whole head is dominated by eyes – this is a visual hunter! Photo: Geir Johnsen, NTNU

Some of the larger animals taking part in the LVM are the amphipods Themisto abyssorum and Themisto libellula. They are hunters – so their reason to migrate up in the water column is not the plants, but the animals eating the plants; their favourite food are copepods of the genus Calanus. These are nice and quite energy-rich small crustaceans that eat the microscopic plants in the upper water column. We have sampled both Themisto-species in the middle of the winter (january), and their guts were filled to the brim with Calanus, so we know that they continue hunting by moon-light. They are such voracious hunters that some researchers have started to call them marine werewolves: the moonlight transforms them from sedate crustaceans to scary killers…

 

But, if they are the hunters, why do they spend so much time in the deep and dark during the lighter parts of the day? The hunters are of course also hunted. Fish such as polar cod (Boreogadus saida),  birds such as little auk (Alle alle) and various seals like to have their fill of the Themisto species. So – life has its ups and downs, and the dance of hunter and hunted continues into the dark polar night…

Anne Helene


Literature:

Berge J, Cottier F, Last KS et al (2009) Diel vertical migration of Arctic zooplankton during the polar night. Biology Letters 5, 69-72.

Berge J, Renaud PE, Darnis G et al (2015) In the dark: A review of ecosystem processes during the Arctic polar night. Progress in Oceanography 139, 258-271.

Kintisch E (2016)  Voyage into darkness. Science 351, 1254-1257

Kraft A, Berge J, Varpe Ø, Falk-Petersen S (2013) Feeding in Arctic darkness: mid-winter diet of the pelagic amphipods Themisto abyssorum and T. libellula. Marine Biology 160, 241-248.

Last KS, Hobbs L, Berge J, Brierley AS, Cottier F (2016) Moonlight Drives Ocean-Scale Mass Vertical Migration of Zooplankton during the Arctic Winter. Current Biology 26, 244-251.

Door # 7: Always on my mind…?

Today is #WormWednesday on Twitter, and we figured that it was a good day to introduce you to this rather unlucky fellow and his sidekick…

The orange (coloured in Photoshop) is the parasite. The two long sacks are filled with eggs.

The orange part (coloured in Photoshop) is the parasite. The two long sacks are filled with eggs.

They were collected during our field work in Sletvik in October. The worm is a polychaete in the genus Terebellides, whilst the parasite is a Copepod. This species rich group of small crustaceans have many modes of life, but parasitism is a common one, with about half of the ~13 000 species being parasites.

headache2_zerene HEADACHE3

Door # 6: Stuffed Syllid

Todays calendar critter is a Trypanosyllis sp. – a undescribed species from the genera Trypanosyllis in the family Syllidae. It most closely resembles a species described from the Mediterranean Sea. The Norwegian species is common in coral rubble, and has been assumed to be the same species as the one described from the Mediterranean. Genetic work reveals that these two are in fact separate species, and thus the Norwegian one is a new species awaiting formal description and naming. (If you read Norwegian, you can learn more about how species are described and named here: Slik gir vi navn til nye arter).

A new species of Trypanosyllis, collected in Sletvik, Norway. Photo by Arne Nygren. CC-by-sa

A new species of Trypanosyllis, collected in Sletvik, Norway. Photo by Arne Nygren. CC-by-sa

This specimen was collected, identified and photographed by Arne Nygren during our field work in Sletvik as part of his work on cryptic polychate species in Norway.

Syllids have opted for a rather fascinating way of ensuring high fertilization rates; something called epitoky: they asexually produce a special individual – the epitokous individual – from their bodies, and release this to go swimming in search of a mate. In the photo you can see that the female reproductive body (epitoke) is filled with orange eggs and has its own set of eyes, close to the middle of the animal. This section will break away from the mother animal and swim away in search of a male reproductive body to reproduce with. The mother animal will then grow a new female reproductive body.

-Arne & Katrine

Door #5: A visit from Mario

The collections have many guest researchers come here to work on our material, and one of our most frequent guests of lately has been Mario, who makes the long trip from Colombia to study both the West African material that we have from the MIWA-project, and to work on Nordic material. We asked him to make a contribution to the blog, and got the folllowing:

Mario in the Lab

Mario in the lab

For October – November visit.

For my third time in the Museum, I have found, as always, very good company from my colleagues in the lab: Katrine, Nataliya, Jon and Tom. Deep morphology and molecular method discussions over very good coffee were the “breaks” between periods of hard work at the microscope.

This time, I take to my home two papers close to completion; one about species of the genus Pista (Terebellidae) with additional information to what I found during my last visit in January. The second paper is about species in the subfamily Polycirrinae (Terebellide) from the West coast of Africa.

The idea is combine drawings, digital photos of specimens with methyl-green staining pattern and SEM pictures, as well as molecular information that will hopefully help us separate species and make better estimates of the region’s biodiversity.

Field work - somewhat cold and windy

Field work – somewhat cold and windy

 

The visit – which was without snow and with only a few showers of rain in Bergen (!), though with some very cold and windy moments at the Marine Station of the University of Trondheim – and sharing time with recognized polychaetologist as Fred Pleijel, Torkild Bakken, Eivind Oug, and Arne Nygren, was as spectacular as to know the Aurora Borealis.

Aurora borealis and a hooded tropical visitor. Photo: K.Kongshavn

Aurora borealis and a (hooded) tropical visitor. Photo: K.Kongshavn

 

Door #4: A spindly Sunday

One of the cool things with the NorBOL-project is that it allows us spotlight animal groups that we don’t normally get to do much with. One such group is the sea spiders, or Pycnogonida. These spider-like critters wander around on the seafloor looking for other invertebrates to snack on (some also live on detritus and algae), and (presumably) for love. I certainly find a lot of them carrying egg sacks and young ones, so they must succeed every now and then! In the Pycnogonida, it is the males who care for the laid eggs and the young, rolling the eggs into one or several balls that he carries around on his ovigers.

The ones I photographed ranged from tiny to over 30 cm:

Colossendeis angusta, collected by MAREANO - this is bigger than a handful

Colossendeis angusta, collected by MAREANO – this is bigger than a handful

Ammothea echinata from the day when we joined the local student dive club - the animal is only a few mm

Ammothea echinata from the day when we joined the local student dive club – the animal is only a few mm

Anatomy of a pycnogonid: A: head; B: thorax; C: abdomen 1: proboscis; 2: chelifores; 3: palps; 4: ovigers; 5: egg sacs; 6a–6d: four pairs of legs Sars, G. O. (1895). An account of the Crustacea of Norway, with short descriptions and figures of all the species. Christiania, Copenhagen, A. Cammermeyer. L. Fdez (LP) – digitization and colouration. - Own work External anatomy of Nymphon sea spider. After G. O. Sars (1895).

Anatomy of a pycnogonid: A: head; B: thorax; C: abdomen 1: proboscis; 2: chelifores; 3: palps; 4: ovigers; 5: egg sacs; 6a–6d: four pairs of legs  L. Fdez (LP) – digitization and colouration. – Own work based on External anatomy of Nymphon sea spider. After G. O. Sars (1895).

At first glance they look a lot like the spiders we find on land, but they are really a very different class of animals (literally!); The sea spiders are found within  Checked: verified by a taxonomic editorAnimalia (Kingdom) > Checked: verified by a taxonomic editorArthropoda (Phylum) > Checked: verified by a taxonomic editorChelicerata (Subphylum) > Checked: verified by a taxonomic editorPycnogonida (Class) (from WoRMS), whilst “land spiders” are found within the order Aranea in the class Arachnida.

Extant (now-living) members of the Pycnogonida are found within the order Pantopoda, which translates into “all legs”, which describes them quite well! They have even moved most of their internal organs (of which they have rather few; respiration is done across the body surface, so no gills) into the legs.

The more I look at them, the funnier they look – but that may be in the eye of the beholder, as a few arachnophobes passing by the camera have declared loudly that there is nothing charming to find here – I beg to disagree!

Goofy looking Nymphon stroemi (note the cheliphores/claws)

Goofy looking Nymphon stroemi (note the chelipores/claws) and the eyes on a tubercle on the head – they have eyes facing both forwards and backwards

Pycnogonum litorale

Pycnogonum litorale

Some species, like this Nymphon gracile, can also swim: "...the swimming motions are the same as those used in walking, but more vigorously executed" King 1974

Some species, like this Nymphon gracile, can also swim: “…the swimming motions are the same as those used in walking, but more vigorously executed” King 1974

Nymphon hirtipes with hitchikers

Nymphon hirtipes with hitchikers

ZMBN_104970

Pseudopallene circularis from Spitsbergen

They are usually slow movers: Hover over the image to see a pycnogonid walking on the sea floor

To fill a plate with tissue samples from 95 specimens (1 animal = 1 specimen) of pycnogonida doesn’t sound too complicated, does it? Well, it turned out to be a bit of an adventure to gather enough animals that had been preserved in such a way that we could get DNA out of them (older material is usually fixated in Formaldehyde, which makes it unsuited for genetic work), and that was identified (had a name to them). Since we are in the process of building up the national (and international) reference library (the BOLD database) that the short DNA-segments (the “barcodes”) are to be matched up to later when someone wants to know which species “Animal X” belongs to, we need to know which species we are submitting for sequencing.

Our collection of barcode-compatible identified pycnogonids received a welcome boost when the shipment of processed material (identified, and measured for biomass) from MAREANO‘s beamtrals collected in 2013 arrived, as these had been fixated in ethanol – and identified by researchers who have worked extensively with the group.

Even so, I couldn’t fill a whole plate with only those specimens. Thankfully, I have skilled collegues that were able to put species names to almost all of the critters I could hunt down in our collections, and so now we have 95 animals ready from 26 different species! We also have some bona fide mysteries that we hope the BOLD-database will help us solve as well; animals that does not comply with any of the identification keys…!

Fingers crossed for a very successful sequence run and a lot of new information about  the Pycnogonida of Norway!

Pseudopallene longicollis, collected by MAREANO

Pseudopallene longicollis, collected by MAREANO

Info:
King, P.E. 1974: British Sea Spiders, synopses of the British Fauna (New Series) No. 5

Door #3: a week in the field

We spent a lovely week in October collecting animals at the field station of NTNU in Agdenes in central Norway.

About 15 researchers and collection curators were gathered for a week of sampling with gear ranging from grabs and trawls deployed from the research vessel Gunnerus to buckets and shovels on the beach. As you may be able to tell, a good time was had by all!

Sletvik_collage

The field work was arranged by the our colleagues at NTNU University Museum, and served multiple purposes:

  • We collected ultra-fresh material for barcoding through the norwegian Barcode of Live project (NorBOL) – several plates were initiated during the week and then brought back to Bergen where we will continue filling them with material from our collections – each plate needs to be filled with 95 samples that can be run with the same primer, so we need to select our material carefully.
  • The marine collections of NTNU got a substantial boost
  • Fresh material was collected for teaching faunistics
  • Photodocumenting live specimens (we have some fantastic polychaete photos from this coming up later in our calendar)
  • Four Norwegian Species Initiative funded projects were participating, collecting material for their projects – as were people from the EU-project SponGES.
  • We at UM also relished the chance to sample in the littoral zone, which is a undersampled habitat in our collections

We are working on the material now, and some of it is scheduled to make an apperance on the blog over the next couple of weeks – so stay tuned!

Door #2: The head of the Medusa

Medusa_by_Carvaggio

Medusa by Carvaggio (Wikimedia)

Today we go mythological, and visit the Greek pantheon.

Medusa was one of three Gorgon sisters who all had snakes for hair according to the mythology – and one can certainly understand how the British zoologist Leach (1791-1836) came to think of the name when he formally described the genus Gorgonocephalus (Literally ” Gorgon’s head”) in 1815. They are found within the echinoderm class of Ophiuroidea (brittle stars).

In English they are known as basket stars, whilst Norwegians know them as “Medusahode” – head of the Medusa.

The English name refers to how they feed: basket stars are predators, and raise their bifurcated arms covered with tiny hooks, spines and grooves up into the current forming a basket to sift and entrap plankton and other small critters from the water as it streams past – then they use their arm branches (possibly aided by the tube feet) to guide the trapped food to their mouths, which is on the underside (like in starfish).

Gorgonocephalus lamarcki, photo by K.Kongshavn

Gorgonocephalus lamarcki, photo by K.Kongshavn

kart

This specimen was collected in Svalbard in 2009 (way up at 80ºN) during a student course at UNIS, and has been barcoded through the Norwegian Barcode of Life (NorBOL) project.

 

Hover your cursor over the image below to see a basket star move

-Katrine

Door #1 Gammarus wilkitzkii – closer than Santa to the North Pole?

We greet December with our 2016 edition of the invertebrate advent calendar, and will be posting a new blog post here every day from today until the 24th of December! Be sure to check in often! All posts of this year’s calendar will be collected here: 2016 calendar, and all of the post in last year’s event are gathered here in case you would like a recap: 2015 edition. First out is Anne Helene and a Northern amphipod:

December is over us, the Advent Calendar from the invertebrate section lets you open the first door today, and many children (both small and slightly older) are eagerly awaiting the answer to their letter to Santa Claus. Mr Claus is supposed to live on the North Pole, and many letters addressed there have been coming through different post-offices the last months.

Many of us are wondering if Santa Claus might be a Species dubius (a species it is slightly doubtful exists), but if he exists, his homestead is becoming endangered. We are seeing a rapid decline of the Arctic sea ice (here is a video from NOAA showing the extent and age of the icecap from 1987 to 2014), and this will undoubtedly have a large effect on the Earths climate.

A polar bear mother and cub walking on the top of the sea ice. Photo: AHS Tandberg

A polar bear mother and cub walking on the top of the sea ice. Photo: AHS Tandberg

In addition to the theoretical possibility of Santa, there are several true and precious species that depend on the sea ice for their life. Most probably think about polar bears and seals now, but there is an even more teeming abundance of life right under the ice, many of them live as the sea ice is an upside-down seafloor. The largest animal biomass of all the many invertebrate species connected to the sea ice (we call these sympagic species), comes form the amphipod Gammarus wilkitzkii Birula 1897.

Gammarus wilkitzkii is the largest of the invertebrates that hang out (literally) under the ice; they can reach almost 3 cm length. They are whitish-grey, with red-striped, long legs. The hind legs have hooks that allow them to easily attach to the sea ice, and hanging directly under the ice instead of swimming saves a lot of energy for them. This behaviour is so necessary to them that if we keep them in an aquarium, they need something to hang on to – be it the oxygen-pump, a piece of styrofoam, the hand of a researcher or the edge of the lid. There are a few observations of swimming G. wilkitzkii sampled from the middle of the water-column, but this seems to be specimens that have lost their hold in life – we do not think they can live long swimming around (that would take too much energy).

A male (white) Gammarus wilkitzkii holding a female (yellow) Gammarus wilkitzkii. The male is also holding on to the sea-ice with his hind legs. Photo: Bjørn Gulliksen, University of Tromsø and UNIS.

A male (white) Gammarus wilkitzkii holding a female (yellow) Gammarus wilkitzkii. The male is also holding on to the sea-ice with his hind legs. Photo: Bjørn Gulliksen, University of Tromsø and UNIS.

Being such large animals, and in such large abundance, G. wilkitzkii are preyed upon mostly by diving sea-birds, but they have also been found in the stomach-content of harp-seals and to a small degree the small and stealthy polar cod. Most of these animals are mainly found in what we call the marginal ice zone – where the sea ice meets the open water. This is also the place where G. wilkitzkii can find most of its own food: algae, other small invertebrates and ice-bound detritus.

A diver under the sea ice. Photo: Geir Johnsen, NTNU

A diver under the sea ice. Photo: Geir Johnsen, NTNU

G. wilkitzkii is also found in great quantities under the multi-year ice, where it probably leads a safer life. Being at the edge of the ice presents a problem: this is the ice that melts during the summer, and that will force the amphipods to move further into the ice as its habitats disappear. The underside of the ice is not a flat field – it is a labyrinth of upside-down mountains and valleys, with several small and large caves. Many nice hiding-places, but if you swim or crawl along the ice-surface, the distance is longer than we would measure it on the top of the ice.

Where the ice is thin, or where there is no snow covering the ice, some light will shine through. This means that the edge of the ice normally lets a lot more light through than the multi-year ice. We dont know what this does for G. wilkitzkii, but they have eyes that are of similar size and shape as the other species in the genus, so they possibly use their eyes for hunting for food or checking for enemies.


G. wilkitzkii is an animal that is accustomed to a tough life. The sea temperature right under the ice normally lies around -1.8ºC, (so below what we think of as “freezing”) this is because of the high salinity of the water. As sea-water freezes, the salt leaks out, and flows in tiny brine-rivers trough the ice and down into the water below.  They have specialised their life cycle to fit with the available food – so that their young are released when there is much food to be found, and they can live up to 6 years reproducing once every of the last 5 years, probably to make sure at least some of their offspring survive.

We have 24 more days before we find out if Santa “exists”, though this might not give us the answer to him having become a climate-refugee. Hopefully, we will have to wait much longer to find out what will happen with the many ice-dependent invertebrates, but becoming climate-refugees might not be easily accomplished for them.

Anne Helene


Literature:

Arndt C, Lønne OJ (2002) Transport of bioenergy by large scale arctic ice drift. Ice in the environment – Proceedings of the 16th IAHR International Symposium on Ice, Dunedin , NZ. p103-111.

Gulliksen B, Lønne OJ (1991) Sea ice macrofauna in the antarctic and the Arctic. Journal of Marine Systems 2, 53-61.

Lønne OJ, Gulliksen B (1991) Sympagic macro-fauna from multiyear sea-ice near Svalbard. Polar Biology 11, 471-477.

Werner I, Auel H, Garrity C, Hagen W (1999) Pelagic occurence of the sympagic amphipod Gammarus wilkitzkii in ice-free waters of the Greenland Sea – dead end or part of life-cycle? Polar Biology 22, 55-60.

Weslawski JM, Legezinska J (2002) Life cycles of some Arctic amphipods. Polish Polar Resarch 23, 2-53.

’tis (soon) the season..

..for our December marine invertebrates calendar countdown!

Last year we made a blog post every day for December 1-24th.

We covered all sorts of topics, below are some of the illustrations. Check out all the 2015 calendar posts here.

Snapshots from the 2015 edition

Snapshots from the 2015 edition

We’re planning the 2016 edition now, and hope to come up with 24 fun/interesting/educational/cool posts – check back in a week’s time to see how it goes!

High(er) species diversity of Glyceriformia

goniadidae figHappy WormWednesday*!

One of our contributions at the International Polychaete Conference in Cardiff was a poster that dealt with how a combination of careful morphological examinations using the available literature and DNA barcoding of polychaetes in the families Glyceridae and Goniadidae from the West coast of Africa is indicating a much higher diversity than we can assign names to at the moment.

Head on over to our MIWA (Marine Invertebrates of Western Africa) blog to see the poster and learn more!

*that is an actual hashtag on Twitter – check it out!