Any opportunity to be in the sea is a good opportunity to go jelly-hunting, and the recent participation of HYPNO on a research cruise with the SponGES Project on RV Kristine Bonnevie this late April – early May was no exception!
To begin with, we got the chance to sample some hydromedusae and siphonophores with the plankton net in Bømlafjord. As usual, towing the net slowly (~0.3 ms-1) resulted in happy jellies (they get damaged if the net is towed too fast!) that sometimes can be identified with ease. Over 15 different species of pelagic hydrozoans (plus some ctenophores and Tomopteris worms) were present in this vertical tow, with some nice looking critters such as the Eutonina indicans and Leuckartiara octona medusae shown below.
Eutonina indicans
Leuckartiara sp.
But not only hydromedusae and siphonophores showed up this time; we also got our hands on benthic samples from grabs and trawls, and found hydroids growing on rocks and other sea creatures (mostly sponges and sea squirts). Abietinaria abietina and Sertularella gayi (pictures below) are among the most common hydroids observed so far, and they were hosting a whole bunch of other hydrozoan species growing on top of them: real mini animal forests from the Norwegian waters!
We don’t have much internet out here, so updates will be sporadic – but here’s the tale of the first half of the two cruises that the Invertebrate Collections people have stowed away on this spring. The current cruise is part of the SponGES-project that is being coordinated by the University of Bergen, Norway (prof. Hans Tore Rapp).
We are currently midway in the six-day cruise (26th of April to 2nd of May), and are presently to be found at 59°63,000 N, 04°42,000 E – there are mountains on one horizon, and open ocean on the other. After a night of muddy (clay-y) sampling, the majority of us are relaxing and eagerly awaiting lunch, whilst some of the sponge-folks are huddled inside the big, blue container on the deck, surveying the sea floor with the ROV Aglantha (occasionally cherry-picking sponges with fancy scoops).
The ROV Aglantha, inside the Blue Box, and sponge-capturing device
At present we are at station #33; it has been three busy days so far! This is the first trip for all of us on the “new” R/V Kristine Bonnevie (formerly known as “Dr. Fritjof Nansen”, but that name has passed on to the new Nansen vessel), and we’re thoroughly enjoying it. The crew is amazing, the food is delicious, and the samples keep coming – what’s not to like? Even the weather has been good to us most of the time – though we have sprouted quite a crop of anti-seasickness patches onboard by now!
#bestoffice
We had to take a break to admire this
Shenanigans on deck
In addition to the ROV, we are using van Veen grabs, Agassiz trawl, plankton net, and RP-sledge to collect fauna. We also stumbled across hundreds of meters of lost fishing line when diving with Aglantha – the operators were able to catch an end of it, and it was dragged onboard to be discarded properly. The rope was heavily colonized by sponges, hydrozoa and mussels, so we got a “bonus sample” from that – and we got to clear away some marine pollution. Win/win!
Old Fishing line being removed – and samples taken from it!
My main incentive for being onboard is to secure ethanol-fixed (=suitable for DNA work) material from locations that we have either none or only formaldehyde fixed. This will then become part of the museum collections – and we will have fresh material for DNA barcoding through NorBOL.
Ready to dive in!
The art of washing grab samples – get rid of the mud, keep the animals intact!
Scooping up top sediment from grabs for analyses
Incoming trawl
Sampling in the sunset
The samples we are collecting are gently and carefully treated on deck before being bulk (i.e. unsorted) fixated in ethanol. There is lab space onboard, but we don’t have the time to do much sorting here. It will be exciting to see what we find once we get back to the lab and begin sorting it!
Lab facilities onboard
But before we get to that, we have three more days with SponGES, and then we go on to the next cruise, which will also be with Bonnevie – this time we’re heading up and into the Sognefjord.
Polycera quadrilineata (Norway) Photo: M. Malaquias
Phillidia ocellata (Mozambique) Photo: M. Malaquias
Chromodoris cf. quadricolor. Vamizi Island
Elysia subornata (Key Largo)
Chromodoris africana (Zavora, Inhambane). This species is part of a complex in need of revision where other “species” imaged here are also part of (e.g. Chromodoris hamiltoni, Hypselodoris regina, Chromodoris elisabethina)
This adventure started 26 years ago, when two Norwegian benthos researchers (Torleiv Brattegard from University of Bergen and Jon-Arne Sneli from the University in Trondheim) teamed up with three Icelandic benthos specialists (Jörundur Svavarsson and Guðmundur V. Helgasson from University of Iceland and Guðmundur Guðmundsson from the Natural History Museum of Iceland) to study the seas surrounding the volcanic home of the Nordic sages. 19 cruises and 13 years later – and not least lots of exciting scientific findings and results the BioICE program was finished.
But science never stops. New methods are developed and old methods are improved – and the samples that were stored in formalin during the BioICE project can not be used easily for any genetic studies. They are, however, very good for examinations of the morphology of the many invertebrate species that were collected, and they are still a source of much interesting science.
Participants of the IceAGE workshop. Photo: Christian Bomholt (www.instagram.com/mcb_pictures)
The dream about samples that could be DNA-barcoded (and possibly examined further with molecular methods) lead to a new project being formed – IceAGE. A large inernational collaboration of scientists organised by researchers from the University of Hamburg (and still including researchers from both the University of Iceland and the University of Bergen) have been on two cruises (2011 and 2013) so far – and there is already lots of material to look at!
Ready to start the workshop! Photo: AH Tandberg
The beaver was here! Photo: AH Tandberg
Ed found the bison! Photo: AH Tandberg
What way should we take? Amphipodologists out of their natural habitat? Photo: AH Tandberg
This week many of the researchers connected with the IceAGE project have gathered in Spała in Poland – at a researchstation in woods that are rumoured to be inhabited by bison and beavers (we didn´t see any, but we have seen the results of the beavers work). Some of us have discussed theories and technical stuff for the papers and reports that are to come from the project, and then there are “the coolest gang” – the amphipodologists. 10 scientists of this special “species” have gathered in two small labs in the field-station, and we have sorted and identified amphipods into the wee hours.
Lauren and Anne-Nina hard at work. Photo: AH Tandberg
Wims microscope after a sample is done.. Photo: Christian Bomholt (www.instagram.com/mcb_pictures)
Lauren after getting the identification right. Photo: AH Tandberg
Ed at work with a nice sample. Photo: AH Tandberg
Lauren examines the specimen while Anne-Nina and Tammy checks the literature. Photo: AH Tandberg
“the Anne-table” in the amphipod lab. Photo: Christian Bomholt (www.instagram.com/mcb_pictures)
It is both fun and educational to work together. Everybody have their special families they like best, and little tricks to identify the difficult taxa, and so there is always somebody to ask when you don´t find out what you are looking at. Between the stories about amphipod-friends and old times we have friendly fights about who can eat the most chocolate, and we build dreams about the perfect amphipodologist holiday. Every now and then somebody will say “come look at this amazing amphipod I have under my scope now!” – we have all been treated to species we have never seen before, but maybe read about. We also have a box of those special amphipods – the “possibly a new species”- tubes. When there is a nice sample to examine, you might hear one of the amphipodologist hum a happy song, and when the sample is all amphipods but no legs or antennae (this can happen to samples stored in ethanol – they become brittle) you might hear frustrated “hrmpfing” before the chocolate is raided.
A large amphipod comes out of the jar! Photo: Christian Bomholt (www.instagram.com/mcb_pictures)
Cleippides quadricuspis. Photo: AH Tandberg
Amphipods sorted and identified. Photo: AH Tandberg
Isopodologists (Martina and Jörundur) visiting the amphipodologists… Photo: AH Tandberg
The samples from IceAGE are all stored in ethanol. This is done to preserve the DNA for molecular studies – studies that can give us new and exciting results to questions we have thought about for a long time, and to questions we maybe didn´t even know we needed asking. We can test if what looks like the same species really is the same species, and we can find out more about the biogeography of the different species and communities.
The geographical area covered by IceAGE borders to the geographical area covered by NorAmph and NorBOL, and it makes great sense to collaborate. This summer we will start with comparing DNA-barcodes of amphipods from the family Eusiridae from IceAGE and NorAmph. They are as good a starting-point as any, and they are beautiful (Eusirus holmii was described in the norwegian blog last summer).
The field-station is ready for easter. Photo: AH Tandberg
The coolest easter-chickens in Spala. Photo: AH Tandberg
Easter-prepared coffee! Photo: AH Tandberg
Happy easter from all the amphiods and amphipodologists!
Anne Helene
Literature:
Brix S (2014) The IceAGE project – a follow up of BIOICE. Polish Polar Research 35, 1-10
Dauvin J−C, Alizier S, Weppe A, Guðmundsson G (2012) Diversity and zoogeography of Ice−
landic deep−sea Ampeliscidae (Crustacea: Amphipoda). Deep Sea Research Part I: 68: 12–23.
Svavarsson J (1994) Rannsóknir á hryggleysingjum botns umhverfis Ísland. Íslendingar og hafiđ.
Vísindafélag Íslendinga, Ráđstefnurit 4: 59–74.
Svavarsson J, Strömberg J−O, Brattegard T (1993) The deep−sea asellote (Isopoda,
Crustacea) fauna of the Northern Seas: species composition, distributional patterns and origin. Journal of Biogeography 20: 537–555.
It certainly does not take a great leap of imagination to get from these Isopoda collected by the MAREANO programme to various science fiction monsters!
click to embiggen!
I just completed photographing and tissue sampling 95 specimens that will be submitted for barcoding through NorBOL – we’ll send them to the CCDB-lab in Canada for sequencing, and upload the metadata and sequences in the BOLD database – fingers crossed for successful sequencing!
Untangling the diversity and evolution of Sea Hares
Aplysia parvula; Føllingen, Norway; Photo by Nils Aukan
Sampling and freezing at Askøy
Dr Carlo M. Cunha from the Metropolitan University of Santos in Brazil (Universidade Metropolitana de Santos), a world expert in the diversity and systematics of Anaspidea heterobranch gastropods, visited the Natural History Museum of Bergen for a month during January/February 2017 to study our scientific collection of these molluscs. The visit was funded by the University of Bergen´s Strategic Programme for International Research and Education (SPIRE).
The Museum holds a large amount of material from the Scandinavian region, but also from the Mediterranean, Macaronesia islands, Caribbean, and western Indian Ocean.
These marine molluscs commonly known by sea hares comprise around 90 currently known species and have long been of major interest to biologists because of their large and easily accessible nervous system, which form the basis of numerous neurophysiological works.
Preserved specimen of Aplysia punctata from Norway
Dissected specimen of Aplysia punctata from Norway
However, the taxonomy of these molluscs and their evolution are still poorly understood. Dr Cunha is using a combination of molecular and morphological tools to learn more about the worldwide diversity of anaspideans and their phylogenetic relationships.
Dr Cunha visit to Bergen has already resulted in the revision and update of the taxonomy of our Anaspidea collection. The Norwegian species of anaspids were revised and redescribed in detail using electron microscopy and DNA barcoding performed in collaboration with Louise Lindblom (University Museum / Biodiversity Labs).
SEM-image of jaws of Phyllaplysia sp from Florida, USA
Additionally several other species from around the world were studied and will be integrated in ongoing taxonomic revisions. Keep tuned!
-Manuel
We’ve also had Lloyd visiting recently, you’ll find a post about that on the Marine Invertebrates of Western Africa blog: click here
A whale recently had to be put down by wildlife management after it had repeatedly beached itself on the island of Sotra outside of Bergen. It was found to be a Cuvier’s beaked whale (Ziphius cavirostris), a species with apparently no official previous records from Norway. The University Museum of Bergen therefore wished to include the whale skeleton in its collections (and future exhibitions, once the remodelling completes).
Arriving at Espegrend
The whale was transported to the Marine Biological Station of Espegrend, and a team of five people from the museum set to work collecting measurements of the whale, taking tissue samples for DNA-barcoding though the NorBOL-project, collecting ectoparasites, and doing photo-documentation.
Collecting measurements
We then began removing the blubber and muscle tissue off the whale so that the bones can be further treated (they contain a lot of oil which needs to be taken care of once the soft tissue has been removed), before the skeleton can be mounted for display.
Starting the work of removing blubber and muscles
Little did we know that what had so far been a local news matter would soon go viral…
Sadly, it became clear during the autopsy that the whale had been ingesting massive amounts of plastic – as much as 30 plastic bags, and many smaller pieces of plastic. The whale was emaciated, and we believe that the plastic had gathered in such an amount in its stomach that it had created a plug, stopping the digestive process.
The plastic in and from the whale stomach (photos: T. Lislevand, H.Glenner/C.Noever)
The images of all the plastic spread out on the ground became a potent reminder of the tragedies that marine pollution is creating, and has sparked a renewed debate on how we can limit the amount of micro- and macro-plastic that end up in nature.
The news of the whale’s stomach content became international news
What should the Cuvier’s beaked whale have been eating?
Occurring as solitary animals or in small pods, and preferring the deeper open waters, the Cuvier’s beaked whale is not an easy animal to study. We do know that the species have a more or less cosmopolitan distribution, and that it holds the world record for longest and deepest dive for any mammal: one was recorded diving down to 3000 meters.
What data we do have on the species diet comes from beached individuals, and suggests that the species may be a fairly omnivorous predator. From the limited number of Cuvier’s beaked whales that have been examined for stomach content, there are regional differences in the diet, but it seems to consist mainly of cephalopods (squid and octopuses), deep sea fish, and medium sized crustaceans (Santos og andre 2001).
Above are the suckers on the arm of a giant squid, Architeuthis. Below are scars on the skin of a sperm whale. Photo: E.Willassen
The cephalopods appear to be the dominant food source, but this interpretation may be influenced by the longevity of the hard parts of a cephalopod in the stomach.
The tough beaks of a cephalopod consist of chitin, and is used for tearing prey to pieces. Chitin is also found in the suckers of many cephalopods. The beaks can be used to identify the cephalod groups based on their size and shapes. Animals such as jellyfish would be much harder to document as part of the diet, as they would be digested much more rapidly and completely.
We don’t know how well resolved the information produced by the animal’s echo-location is, but it is conceivable that the plastic reflects signals in a way similar to the natural food of the whale, and is therefore “caught” and eaten.
Cephalopod beak, drawing by J.H. Emerton (from Wikimedia commons)
We did find some cephalopod beaks in between the plastic in the whale stomach – so far we have not had the time to attempt to identify these, but we will.
Amongst the plastic there are some cephalopod beaks (dark brown) and a bivalve shell (top left). Photo: C. Noever
The University Museum have extensive cephalopod collections, and long traditions for working with this group – from Dr. Jakob Johan Adolf Appellöf who began working here in 1890, to the material collected in the MAR-ECO project.
MAR-ECO workshop on cephalopoda
From the work of Santos et al 2001 we know that the following species are in the diet of European Curvier’s beaked whales, and are probably amongst the things our whale should have been eating:
Tewuthowenia megalops. Photo: Richard E. Young during MAR-ECO-cruise 2004.
Teuthowenia megalops is an odd squid that floats around in the open water with a propulsion system based on ammoniumchloride that the animal produces by digesting protein. The name “megalops” hints to the huge eyes, which also contain three light producing organs (chromatophores). The species seems to be common in deep water in the north Atlantic (Vecchione et al. 2008). For more information, see Wikipedia.
Mastigoteuthis agassizi
Mastigoteuthis agassizii was originally registered in whale stomachs as Mastigoteuthis schmidti, but from the work on the MAR-ECO project, three species of Mastigoteuthis were considered to all be M. agassizii. Some ambiguity remains about the species of this genus of oceanic squid with a broad distribution in the world’s oceans in depths ranging from 500 to 1000 meters. They have diurnal migration, and may be found hunting closer to the surface at night.
Taonius pavo seen ventrally (above) and dorsally. Illustration from Wikipedia.
Taonius pavo
This little squid is not very well known. It has been recorded from the Atlantic Ocean, but it may have a broader distribution. In this link you will find a video from the Bahamas at 850 m depth where the animal releases bio- luminescent “ink” to confuse a predator and escape.
Histioteuthis bonelli Photographed by Richard E.Young during the Mar-Eco-cruises in 2004
Histioteuthis bonelli, drawing by Ernst Haeckel.
Histioteuthis bonnellii has several names in English, one of which is “umbrella squid”. The name is due to the skirt-like membrane between the arms – when it splays its arms it resembles an umbrella. We don’t know much about the biology of H. bonellii, except that it has several close relatives in the world oceans, and that what has hitherto been considered one species (H. bonellii) may well turn out to be several species.
Todarodes sagittatus
Todarodes sagittatus, the European flying squid, is one of the ten-armed cephalopods that may irregularly occur in schools along the Norwegian coast. T. sagittatus is subject to fisheries.
Vampyroteuthis infernalis
Vampyroteuthis infernalis – the vampire squid is a deep-sea squid with eight arms and a skirt-like mantle between its arms. It also has moveable wings on its body that it can use to manoeuvre with. The name “vampire squid” is not quite true – this is no blood sucker, but it traps organic material from the water masses using long, sticky threads. If threatened, it can invert the “skirt” over its head, resembling a hedgehog. It also has light producing organs towards the back of the body, and can create clouds of bioluminescence. Even with all these defences, it may end up in the stomach of a Cuvier’s beaked whale.
Pelagic crustaceans and deep sea fish are also amongst the recorded prey from Cuvier’s beaked whales. Amongst these we find the fairly large and shrimplike Gnathophausia, found within the order Lophogastrida, which has been studied extensively at the University of Bergen. We also found a bivalve shell in the stomach of our whale, which as far as we are aware of has not been recorded as part of their diet previously.
Plastic or food?
It may seem strange that the whale should ingest large amounts of plastic – why would it do that? If the whale primarily finds its pray by echolocation in the pitch black of the deep sea, it may well be that it is unable to differentiate between the reflected signal from a sheet of plastic, and that from one of its usual prey animals.
Unlike the sperm whales that hunt cephalopods in a similar way, the beaked does not have teeth to grab its pray. Instead they use a suction to ingest the food. Perhaps it is this feeding mode that becomes very unfortunate for the whales in a natural environment with an incredible amount of human garbage.
The lab is teeming with guest researchers these days, as we have these three lovely polychaetologists visiting to work on the MIWA (Marine Invertebrates of Western Africa)-material.
From the left we have Kate from Wales, Lloyd from Ghana, and Polina from Russia
Kate is working on the polychete family Magelonidae, and has written a blog post about her stay. Lloyd is working on the families Glyceridae and Goniadidae, and Polina is doing her MSc thesis on the Lumbrineridae. You can find short project descriptions of these (and many of our other) polychate projects here.
Makes sure to check by our MIWA-blog for more updates in the time to come!