Category Archives: NorBOL

Door #23: Of MAREANO and the Museum

As mentioned earlier in our calendar, we have an extensive cooperation going on with the seabed mapping programme MAREANO*. You can read a lot more about MAREANO on the project home page, where you will also find many interesting videos and beautiful photographs from – quite literally – the bottom of the sea, as video transects are extensively used for mapping the sea floor and its biodiversity.

book mareanoMAREANO very recently published a book named “The Norwegian Sea Floor – New Knowledge from MAREANO for Ecosystem-based Management”. As it presents the uniquely detailed mapping that is being carried out, it has received much attention (also internationally, more about that here and here (in Norwegian)). You can access the book as a pdf though the MAREANO web pages – check it out!

We wanted to include a post in our advent calendar about the part the University Museum plays regarding the thousands and thousands of biological samples that MAREANO generates. The MAREANO material is a big part of our everyday work here, and so it’s been blogged about before: follow the links to learn more our about cruise participation, workshops (e.g. here and here), new species described from UM based on MAREANO-material, and genetic barcoding through the Norwegian Barcode of Life (NorBOL) project.

Workshop on the MAREANO-sponges

Workshop on the MAREANO-sponges

From a workshop on Cumacean Crustacea collected by MAREANO - it was late in December,so of course we had to make gingerbread critters

From a workshop on Cumacea (Crustacea) collected by MAREANO – it was late in December, so of course we had to make gingerbread critters (that could be identified to genus or species level..!)

Snaphshot from one of the workshops during the porject Polychaete diversity in Norwegian Waters (PolyNor)

Snaphshot from one of the workshops during the project “Polychaete diversity in Norwegian Waters” (PolyNor), which has been working a lot on MAREANO-collected material

Every station with physical biological sampling typically includes two grab samples, one or two RP-sledge drags, and one beam trawl. Combined with video and all sorts of geological and chemical data collected, this gives us a thorough insight to the biodiversity at the location. The samples collected by different gears are naturally also treated differently; you can see how they are split up in this figure:

mareano_whatgoeswhere

IMR = Institute of Marine Research (Havforskningsinstituttet)

Now, any project – even one as extensive as MAREANO – does have a finite life span, whereas museum collections are (at least in theory) here for “eternity”. This means that we have to try and envision what material will be important not just right now, but also in the future – whilst we simultaneously deal with the constraints of limited time and space. It is not feasible to keep everything, but we do try our best to make sure that we keep that which is most important. The fact that MAREANO collects material not only in formalin (good for morphological studies), but also in ethanol (which – unlike formalin – enables us to do genetic analysis) is hugely important as we get the best of both worlds delivered – by the pallet!

Three (!) pallets of material

Pallets of material

Buckets and buckets with sediment and animals

Buckets and buckets with sediment and animals

Filling up the car with precious cargo

Filling up the car with precious cargo

Sorting the bulk fractions by station until we process them

Sorting the bulk fractions by station until we process them

Once we receive a shipment of material, we get to work – the identified animals are unpacked, and an assessment is done on how to proceed with them; catalogue them into the museum collection, interim catalogue them into our “project catalogue”, leave them untreated for now, catalogue and pass it on to researchers working on that particular group of animals, to include it in our current projects, or discard it.

The unsorted fractions require even more TLC; the first step is for us to separate the animals from the sediment – from there on it goes through much the same process as the identified critters. These unsorted (and mostly ethanol-fixed) samples have yielded many interesting finds, and will undoubtedly continue to do so! We have so far submitted over 1300 specimens collected by MAREANO to be DNA-barcoded through the NorBOL project, and this number will continue to rise.

Sorting identified polychaete samples to family before storage

Sorting identified polychaete samples to family before storage

Guest researchers come to work on the material, here is Julio from Spain, who examined bristle worms from the family Oweniidae

Guest researchers come to work on the material, here is Julio from Spain, who examined bristle worms from the family Oweniidae

But why do we need to keep all this material? Isn’t it “done” once MAREANO has done their identification of the fractions that they process? Of course not!

This material is a veritable gold mine for scientists, and it keeps on giving; MAREANO in it self aggregates a huge amount of interesting data (see here, for instance).

However, there are still many animal species groups that are extremely difficult to identify and when specialists on specific groups get the chance to compare specimens from different regions of the world, they very often find that original taxonomic identifications have to be revised. There are many reasons for that. Specimens may simply be misidentified. The revising taxonomist may also discover that specimens of the same species are called with different names in different laboratories. With applications of DNA-techniques it may also became apparent that what was originally considered to be one widespread species is actually several different species that have to be described and named.

So there are at least two main reasons why museums are eager to access and store material from projects like MAREANO and MIWA. One is the fantastic opportunity to get fresh specimen for research. Another reason is to safeguard and document the physical objects that the data were based on and to offer open access to study the specimens for the scientific community of researchers in biodiversity. Taxonomic studies may take a lot of time to complete, and taxonomists are scarce – so new results will continue to emerge at erratic intervals.

Ampharete undecima. One of the tools used when describing a new species is the electron microscope, which allows us to take very detailed photographs of the animals. Photo: K. Kongshavn

Ampharete undecima. Photo: K. Kongshavn

Thus the collected material is – and will continue to be – invaluable to scientific community for many, many years to come. There are still many new species waiting to be discovered (such as the little polychaete Ampharete undecima (Alvestad et al 2014), or the Amphipod Halirages helgae (Ringvold & Tandberg 2014), and there is much, much more to be learned about the distribution, habitats and life history of the species that we do know.

Therefore we are both proud and grateful to play a part in the safekeeping of this valuable material, and hope that it will continue to bring exciting new knowledge!

References:

Alvestad T., Kongsrud J.A., and Kongshavn , K. (2014) Ampharete undecima, a new deep-sea ampharetid (Annelida, Polychaeta) from the Norwegian Sea . Memoirs of Museum Victoria 71:11-19 Open Access.

Ringvold, H & Tandberg, A.H. (2014) A new deepwater species of Calliopiidae, Halirages helgae
(Crustacea, Amphipoda), with a synoptic table to Halirages species from the northeast Atlantic http://dx.doi.org/10.5852/ejt.2014.98

-Katrine & Endre

(*For those wondering: MAREANO is short for Marine AREAl database for NOrwegian sea areas)

Door #12: Plankton sampling with a vertebrate view!

HYPNO participating on an Arctic cruise by the Institute of Marine Research on RV Helmer Hanssen 17 Aug – 7 Sep 2015.

Julekalender Aino 2-001Most of the pelagic hydrozoans for HYPNO are collected with simple plankton nets, in the case of this Arctic cruise the double one you see in the picture. The net is towed vertically from above the bottom to the surface, bringing with it a representative sample of plankton – inclusive hydromedusae and siphonophores – from the entire water column. Standard plankton nets are generally lowered and retrieved at a speed of ~0.5 ms-1.

This particular station in the Arctic basin was over 2000 m deep, which means that a single tow takes more than an hour to complete. Sometimes waiting for the sample to come up can get a bit tedious – not at this station, though! With this beauty turning up right outside the hangar opening, the wait didn’t feel long at all!

SI_Arctic 24-8-2017 SI_Arctic 24-8-2016-Aino

Door #11: Just a white blob?

Colobocephalus costellatus repainted from M. Sars (T.R. Oskars)

Colobocephalus costellatus repainted from M. Sars (T.R. Oskars)

When researching small, obscure sea slugs you are bound to run into surprises. Partly because it often takes a long time between discovery and identification, and also because a lot of the really interesting stuff is first revealed when new methods become widely available.

In 2011 a team of researchers from the Invertebrates collection were sampling specimens in Aurlandsfjorden for the Invertebrate collections and range data for the Norwegian Biodiversity Information Centre (Artsdatabanken). Among other interesting critters they found a 2 mm long white blob. While not initially impressive this small blob turned out to be the enigmatic cephalaspidean sea slug Colobocephalus costellatus (Cephalaspidea: Heterobranchia) described by Michael Sars from Drøbak in 1870. At the time of its re-discovery it was thought that this species, which is unique for Norway, had not been seen or collected since M. Sars first laid hands on it 145 years ago (more (in Norwegian) here). However, you continuously discover more information in the course of scientific work. During their work on the enigmatic slug Lena Ohnheiser and Manuel Malaquias found in the literature that the species had in fact been discovered a couple of times since 1870, first by Georg Ossian Sars in Haugesund some years after his father, and more recently by Tore Høisæter of Bio UIB in Korsfjorden outside Bergen.

Still, no in-depth analyses have been done on this species since M. Sars until Nils Hjalmar Odhner of the Swedish Natural History Museum drew the animal from the side showing some of the organs of the mantle cavity.

Most authors have had real difficulties to place this slug within the cephalaspids, and M. Sars even thought is possible that the slug might not be an opisthobranch. Some placed it within Diaphanidae based only on the globular shell, a family that has been poorly defined and often used as a “dump taxon” for species that hare hard to place. Yet others thought it might even be the same as the equally enigmatic Colpodaspis pusilla, which has been suggested to be a philinid sea slug (flat slugs digging around in mud and sand).

What was unique about the most recent find was that this was the first time it was collected alive and photographed with high magnification. The material was also so fresh that Lena and Manuel could dissect the animal and study its internal organs. In their 2014 paper “The family Diaphanidae (Gastropoda: Heterobranchia: Cephalaspidea) in Europe, with a redescription of the enigmatic species Colobocephalus costellatus M. Sars, 1870” they tried to resolve the relationships between these globe shelled slugs. What they found was that Diaphanidae was likely not a real grouping of species, containing at least three distinct groups, where one group was Colobocephalus and Colpodaspis, which were closely related to each other, but also quite distinct.

Colobocephalus costellatus M. Sars, 1870. Photo Lena Ohnheiser, CC-BY-SA. Also featured on http://www.artsdatabanken.no/File/1292

Colobocephalus costellatus M. Sars, 1870. Photo: Lena Ohnheiser, CC-BY-SA. Also featured on http://www.artsdatabanken.no/File/1292

Another new development with the sampling in Aurlandsfjorden was that the slugs were preserved in alcohol rather than formalin. Formalin is good for preserving the morphology of animals, but it destroys DNA. On the other hand, alcohol is perfect for preserving DNA. This lead to C. costellatus to be included in a 2015 DNA based phylogenetic analysis of cephalaspidean sea slugs.

Modified Tree from Oskars et al. (2015)

Modified Tree from Oskars et al. (2015)

This resulted in that the slug was found to be indeed an Opisthobranchia, and as Lena and Manuel thought, Colobocephalus and Colpodaspis were placed in their own family, Colpodaspididae. Whereas the traditional “Diaphanidae” was split apart. Even weirder was the sea slugs that were shown to be the closest relatives of Colpodaspididae, which were neither the philinids or the diaphanids. The closest relatives turned out to be slugs that are equally as weird and unique as Colpodaspididae, namely the swimming and brightly colored Gastropteridae (sometimes called Flapping dingbats) and the Philinoglossidae, which are tiny wormlike slugs that live in between sand grains.

*Cousin Meeting*  - "You sure we are related?"  - "Well, the scientists seem to think so. I see no reason to waste a good party!"

*Cousin Meeting*
– “You sure we are related?”
– “Well, the scientists seem to think so. I see no reason to waste a good party!”

So it took 145 years from its discovery before Colobocephalus became properly studied and its family ties revealed, but it is still mysterious as we do not know much about their ecology or diet.

Suggested reading:

Colobocephalus costellatus: http://www.biodiversity.no/Pages/149747

Colpodaspis pusilla: http://www.biodiversity.no/Pages/149766

Philinoglossa helgolandica: http://www.biodiversity.no/Pages/149915

Høisæter, T. (2009). Distribution of marine, benthic, shell bearing gastropods along the Norwegian coast. Fauna norvegica, 28.

Gosliner, T. M. (1989). Revision of the Gastropteridae (Opisthobranchia: Cephalaspidea) with descriptions of a new genus and six new species. The Veliger, 32(4), 333-381.

Odhner, N.H. (1939) Opisthobranchiate Mollusca from the western and northern coasts of Norway. Kongelige Norske Videnskabers Selskabs Skrifter, 1939, 1–92.

Ohnheiser, L. T., & Malaquias, M. A. E. (2014). The family Diaphanidae (Gastropoda: Heterobranchia: Cephalaspidea) in Europe, with a redescription of the enigmatic species Colobocephalus costellatus M. Sars, 1870. Zootaxa, 3774(6), 501-522.

Oskars, T. R., Bouchet, P., & Malaquias, M. A. E. (2015). A new phylogeny of the Cephalaspidea (Gastropoda: Heterobranchia) based on expanded taxon sampling and gene markers. Molecular phylogenetics and evolution, 89, 130-150.

Sars, M. (1870) Bidrag til Kundskab om Christianiafjordens fauna. II. Nyt Magazin for Naturvidenkaberne, 172–225.

-Trond

Door #9: Delving into the DNA

From the pre-PCR lab

From the pre-PCR lab

The four PCR-machines lined up

The four PCR-machines lined up

We are very fortunate in that we have a modern DNA lab available «just down the street» from us, as the University Museum is part of the shared Biodiversity laboratories (BDL) structure.

The BDL is a formalized cooperation between three research groups at Dept. of Biology (Marine biodiversity, Geomicrobiology and the EECRG), and two of the research groups at the University Museum. One of the senior engineers if this lab is a Museum employee, and from time to time we are also able to hire in other collaborators for specific projects.

 

 

 

Pipetting

Pipetting samples onto one of the plates that we fill with DNA-extracts

 

For the past couple of months we’ve had a technician – Morten – working on resolving some of the challenges that we run into when we work on COI barcoding of marine invertebrates.

Unlike many of the other groups that this method works exceedingly well for (like the Diptera), we are experiencing difficulties in obtaining DNA barcodes from a significant proportion of our samples.

IMGP0775-001We are currently focussing particularly on the Polychaeta (bristle worms), as this is the group we have submitted the majority of samples from in both our major barcoding projects: MIWA (Marine Invertebrates of Western Africa) and NorBOL (Norwegian Barcode of Life).

 

Morten has been working on obtaining DNA from the more problematic species, by troubleshooting and tinkering on various aspects of the ways we extract and amplify genes.

Basically there are more or less standardized ways of obtaining DNA, and these methods normally works well. Unfortunately (for various reasons) this is not always the case, and this is where we have to alter the protocols to see if we can find a way to retrieve the sample DNA from the specimens.

So far it looks quite promising; we’ve been able to fill in some of the most important “blanks” in our datasets – and we’re not done yet!

– Morten & Katrine

Door #4: A cushioned star

This gorgeous sea star was first described by O.F. Müller in 1776. He gave it a species name fitting the characteristic appearance of the animal (Lat. Pulvillus= pillow, cushion). The common names in both English – Red Cushion Star- and Norwegian – Sypute – also reflect on this. Though most commonly red like the specimen pictured below, they can also be yellow-white. The white protrusions on the upper side the are gills. It lives at 10-300 meters depth, where it is often seen feeding on the coral Alcyonium digitatum. This particular specimen was collected during the course in marine faunistics this fall, in a locality just outside our field station close to Bergen.

Porania-001 ZMBN_106039_2Strangely enough, considering how common, conspicuous and wide-spread the species is, it has not been barcoded very frequently in BOLD – our specimen here will be the fifth in total to be submitted..!

Screen shot from a search in BOLD for the species

Screen shot from a search in BOLD for Porania pulvillus

-Katrine

Door #3: Prepare to be HYPNOtized

One of this year’s new projects at the Invertebrate collections is HYPNO – Hydrozoan pelagic diversity in Norway, funded by the Norwegian Taxonomy Initiative.

A selection of photos depicting some of the species encountered so far in the project

A selection of photos depicting some of the species encountered so far in the project

Hydrozoa are a class of cnidarians, the pelagic representatives of which include hydromedusae as well as colonial siphonophores and porpitids. They are thus “cousins” to the more familiar larger scyphozoan jellyfish such as the moon jelly or the lion’s mane jelly. The size of pelagic hydrozoans ranges from small medusae of less than 1 mm to siphonophore colonies reaching several meters in length. They are mostly predators that use their tentacles and stinging cells to catch other zooplankton or even fish larvae. Most of the time they go largely unnoticed by the public, but at times they can form blooms and deplete zooplankton as well as cause problems for aquaculture and fisheries or sting bathers.

The aim of HYPNO is to chart, document and DNA-barcode the diversity of hydromedusae and siphonophores occurring in Norway. Gelatinous zooplankton, including hydrozoans, has been generally less studied than their crustacean counterparts, and we know less about their diversity. This is due to several challenges in studying them. First of all, many pelagic hydrozoans, particularly the colonial siphonophores, are very fragile and often damaged during sampling with standard plankton nets. This can make it difficult to identify them. Secondly, preserving hydromedusae and siphonophores for later work is problematic. For morphological studies, they are best preserved in formalin, since most other fixatives used for zooplankton -including ethanol- cause distortion and shrinkage of their gelatinous bodies, rendering the animals impossible to identify. Formalin fixation, however, hinders further genetic work.

To overcome these practical problems, HYPNO uses gentle collection methods to obtain specimens in good condition. Collected samples are immediately examined for hydrozoans, and the live animals are identified and documented with photos before they are fixed in ethanol for DNA barcoding of CO1 and 16S sequences.

So far, HYPNO has participated on two cruises by the Institute of Marine Research: to the North Sea and Skagerrak on RV Johan Hjort 24 Apr – 4 May 2015 and to the Arctic Ocean and Fram Strait on RV Helmer Hanssen 17 Aug – 7 Sep 2015. So far, 34 species have been photographed and sampled for DNA. Here is a selection of pictures depicting some of the species encountered during these surveys.

You can read more about HYPNO at http://data.artsdatabanken.no/Pages/168312.

-Aino

Door #1: A day at sea

Welcome to our marine invertebrates December calendar! In Norway it is very common for children to have a Advent calendar of some sort to help shorten the wait towards Christmas.

We’ve decided to run with the idea here on the blog, giving you a tidbit about our work every day from December 1st to 24th.

We hope you’ll join us on our little venture – we can guarantee a varied selection of topics!

All the posts will be gathered under the Category 2015 December calendar

First out is a tale of sampling in the sleet…!

The scientific collections are the backbone of all the research performed at the University Museum – as it is at any museum. They hold treasures collected through the entire lifetime of a museum, and most times a collection was the reason for the establishment of a proper museum. The University Museum of Bergen is one of the oldest natural history collections in Norway, and we have grand collections.

But a collection needs to live – to be added to and to be used of – and this was the reason that bright and early Monday morning Katrine and Anne Helene were ready to go to sea. Our goal was to make a jumpstart at Anne Helenes new project about Amphipods (more about that in a later blog), and to take a grab (or two) of sandy seafloor to look for bristle worms (Polychaeta).

It is always a risk planning on a cruise in the very end of November, but this time the weather was on our side. Our plan – “go out and grab animals, sandy bottom is nice” – was cooked up in the spur of the moment  when we got an offer for boat time late Friday afternoon (someone else had to change their plans in the last minute), and maybe that was why everything went so smoothly? Going out collecting benthic animals (those that live on the seafloor) is one of our favourite things, and so we didn’t need much prodding.

The grab and sledge performed beautifully, and now is the time for sorting and photographing live animals before adding them to the collection. Be sure to follow their story through later blogs – they will show up in the categories NorAmph and NorBOL, and maybe somewhere else as well?

 Katrine and Anne Helene

Make sure to check back tomorrow to see what is behind Door #2…!

Guest Researchers: São

IMGP0472The invertebrate collections are high in demand these days, and we have a string of visitors coming here to examine the material. One of these is São from the University of Aveiro, Portugal. She works with polychaetes in the family Nephtyidae. In her own words:

18-23 October – After an amazingly (for Bergen ☺) sunny Sunday, with a wonderful walk through the mountain, I had a very productive week looking through nephtyids from Western Africa. More than 300 specimens were examined and ascribed to 13 putative species. The results were very exiting! Interesting distribution patterns and a couple of potentially new species for science. Now we are waiting for barcodes…

Greeting from the Faunistics course!

Todays cutest catch - he's a Rossia cephalopod

Today’s cutest catch – he’s a Rossia cephalopod

 

I’ve spent both last week and the current one at the UiB field station – Espegrend – together with an enthusiastic bunch of marine biology master students and their teachers.

Espegrend

Espegrend

I am mainly here to collect animals for NorBOL, but it’s hard to resist the temptation to join in on the course itself every now and again – whether in the field or in the lab!

Lots and lots of litterature

Lots and lots of litterature

 

The baseline for the course is that the students will get to look at all sorts of freshly collected animals from various habitats and learn to identify them.IMGP0626

Kelp tank

Kelp tank

Identified samples - at the end of each day, the students present the animals that they have studied that day to their classmates.

Identified samples – at the end of each day, the students present the animals that they have studied that day to their classmates.

Whilst doing so, they acquaint themselves with the different keys and terminology used to identify the critters, learn which species are associated with which habitats, and get practical experience of how to collect and treat samples of various kind (you would for example use a different kind of gear to collect on a muddy substrate than on a rocky slope).

So it is a busy couple of weeks, with lots to learn.

Work on deck

Work on deck

IMGP0667

Sponge-ID

First day in the field, Henrik is demonstrating

First day in the field, Henrik is demonstrating

Incoming sample!

Incoming sample!

Tomorrow is the final day of collecting (it will be “parasite day”, which means a trawl to collect fish and various other animals likely to have parasites on (or in!) them.

Today we have focused on sponges, yesterday it was zooplankton, Monday was polychaetes – and so it goes!

 

 

 

 

 

 

Here are some of the animals that we have been working on:

 

The weather last week was…interesting, as was the absolute downpour a student and I went out in Monday morning – but today was simply a beautiful day for field work!

Stormy weather! Thankfully it passed after the first week.

Stormy weather! Thankfully it passed after the first week. The map is from the really cool page earth.nullschool.net

Much, much nicer weather

Much, much nicer weather

As well as (re)presenting the Museum (yes, we do other things than the exhibitions, and ye-ees, we are interested in new students!), I gave a presentation of NorBOL and the work we are doing on marine animals last week (so far it is only animals, we will start with the marine macro algae the coming spring).  I have been collecting quite a few new species that are to be barcoded from what the students work on, as well as supplementing what we have. In addition I will bring back some nice (but so far unidentified) samples to the Museum that we will continue to work on.

And who knows – maybe I have recruited some future collaborators?