Category Archives: Photography

Door #18: A photosynthetic animal

You may already be confused with the title, but you did read it well! Animals can do photosynthesis and most incredibly some species are more efficient than plants or algae. Yet, this achievement is not for all; you must be special, you must be unique…, you must be a sapsucking slug!

Ercolania sp. feeding inside algae (Photo: M. Malaquias)

Ercolania sp. feeding inside algae (Photo: M. Malaquias)

This is a process named kleptoplasty (= chloroplast symbiosis; see Door #2 of this calendar series) where the slug while feeding from the plant tissue does not digest the chloroplasts but instead migrate these organelles to specific parts of the body where they remain active producing sugars that become available to the slug.

There are two species of sapsucking slugs with a remarkable life-history. The spectacular and rare tropical species Ercolania endophytophaga and E. kencolesi both only known from Australia do not retain chloroplasts as other species do, but they do feed on algae, however, only on a very special kind – the green grape-algae of the Order Siphonocladales. These are syncytial algae made of massive single cell grape-shaped structures which the animal pierce to move in and leave inside until “green-matter” is available.

detail of Ercolania sp. inside algae (Photo: M. Malaquias)

detail of Ercolania sp. inside algae (Photo: M. Malaquias)

I was very fortunate to find one of this slugs back in January 2014 in southern Mozambique. Usually one has to collect a large quantity of algae to carefully search through later on in the lab and hope for the best! However, in that afternoon while sampling in a beautiful shallow tidal tropical reef in Paindane sluggishly looking at a facies of a “grape-alga” growing over a boulder I suddenly notice a tiny animal moving gently inside the algae. I grabbed a few bunches of algae into my sampling jar to look at later on…, and voilà… I was rewarded with a few specimens of one of this spectacular and difficult slugs most probably an undescribed species, the first from the Indian Ocean.

Ercolania sp. after removal from algae (Photo: M. Malaquias)

Ercolania sp. after removal from algae (Photo: M. Malaquias)

-Manuel

Door #17: A marriage of art and science

What does an organism really look like – and how does that organism make us feel, what thought does it inspire, and what beauty is hidden within their complex structures?

Some of Pippip Ferner ́s studies from the cruise onboard G.O. Sars. (Small paintings  20x20cm in acrylic paint, ink and pencil) ©

Some of Pippip Ferner ́s studies from the cruise onboard G.O. Sars. (Small paintings 20x20cm in acrylic paint, ink and pencil) © Pippip Ferner

Anne Helene and Pippip look at the same organsims, but from different perspectives. Anne Helene works as a scientist at the Invertebrate Collections and Pippip Ferner is an artist who is very inspired by marine biology and marine organisms in her work.

As biologists we have the privilege to see many of the wonders of nature up close as part of our job. But how can we share that with the rest of you – all of us who didn´t go to that cruise, or don´t study that exact organism?

© Pippip Ferner

© Pippip Ferner

Historically, artists used to be part of most large projects – as documentarists. This tradition still stands, but now it is often the scientists that make drawings of what we see, and often more importantly: what details are the important ones for the scientific studies. Where does the pure artistic (non-documentary) work fit now?

 

 

 

Pippip´s long interest in marine biology has lead to her participation on a scientific cruise with MAREANO, where she met Anne Helene. Being on a cruise and observing animals live, talking with the scientists and see (part of?) what they see lead to a series of sketches that resulted in many paintings, sculptures and prints.

Amphipods by Pippip Ferner. Ink on paper. © Pippip Ferner Want to see more?  www.pippip.no

Amphipods by Pippip Ferner. Ink on paper. © Pippip Ferner Want to see more?
www.pippip.no

She wants to look at the marine biology from a non-scientific view point, to look at details or whole organisms and see new shapes and explore textures. Where the scientist has to stick to the strict morphology of the organism, Pippip can look at what is not seen.

Ferner had no idea in advance that an  amphipod had personality...  © Pippip Ferner

Ferner had no idea in advance that an
amphipod had personality… © Pippip Ferner

Here are some of Pippips examinations of amphipods – and some photos and scientific drawings of some amphipods that might have been inspiring her.  In Pippips own words, she aims to “ contrast beauty against ugliness, weak against strong, small againt large.” This might make it both easy and difficult to recognise her objects, and her pictures might be both simple and complex at the same time.

Much of our scientific work is to observe minute details in our chosen organisms. Looking at amphipods scientifically means looking for serrations along curved ridges, counting small hairs (seta) and seeing if they have split ends, looking at shapes of mouthparts and lengths of feet and antennae, and documenting this with photos and drawings.

Example of scientific drawing of  mouthparts.  Exitomelita sigynae Tandberg, Rapp et al, 2011

Example of scientific drawing of
mouthparts. Exitomelita sigynae
Tandberg, Rapp et al, 2011

Having the luck and joy of seeing these same organisms represented artistically can give an added dimension to our work. It also gives the possibility for all the rest of you to get another gate to come in contact with our organisms through.

Maybe taking both views into account will help us learn and understand even more? The scientific and artistic views can supplement each other, and have been doing so already for generations.

Metopa boecki  (live) Photo:  Anne Helene Tandberg

Metopa boecki (live) Photo: Anne Helene Tandberg

The collaboration between Pippip and Anne Helene continues – yesterday Pippip visited the Invertebrate Lab, to get new ideas and inspirations for further artistic examinations… We are sure more beautiful, inspiring and maybe provoking representations of marine life will continue to come from this collaboration. Be sure to follow us!

– Anne Helene and Pippip

Door #15: Guest researchers: Ivan

Ivan Nekhaev from Murmansk came to the University museum in November for a two week stay where he examined some of our mollusc collection. He kindly agreed to participate in our Advent blog adventure, and here is what he had to say:

The main goal of my work at the University Museum of Bergen was studying of minute snails of the family Rissoidae (and drinking a couple gallons of coffee as well :-)).

Rissoids, like many gastropod groups, are more diverse in tropical and subtropical waters whereas the number of species reached northern areas in their distribution is remarkably low: within the several hundreds of northern Atlantic rissoid species, slightly more than dozen of species are know from the adjacent part of the Arctic Ocean. Nonetheless, anatomy for the majority of species had never been investigated and hence the taxonomical status and generic position of some Arctic representatives of the family is questionable, while the accurate data on species composition are still absent for many regions of the Eurasian Arctic.

rect4027-001

During my work with the collections of the University Museum I investigated morphology of ten Scandinavian and Arctic species. These data will be used in revision of Eurasian Arctic rissoids and provide me with a good material for the further investigations in “southern” rissoidean snails.

-Ivan

Door #14: A world of colour and slime

Welcome to the world of Nudibranchs!

Flabellina rubrolineata (Mozambique) Photo: M. Malaquias

Flabellina rubrolineata (Mozambique) Photo: M. Malaquias

The nudibranchs are among the most beautiful animals in our seas. The palette of colours, shapes, and adaptations depicted by this group of gastropod molluscs has no parallel. Some species have no more than few millimetres where others can reach nearly half a meter. Some have a smooth skin, others are covered with long and delicate appendices.

Chromodoris boucheti (Mozambique) Photo: M. Malaquias

Chromodoris boucheti (Mozambique) Photo: M. Malaquias

Phillidia ocellata (Mozambique) Photo: M. Malaquias

Phillidia ocellata (Mozambique) Photo: M. Malaquias

Most are benthic, but some are pelagic drifting with the oceanic currents. Nudibranchs feed on sponges, bryozoans, crustaceans, and cnidarians and even can incorporate in their tissues nematocysts sequestered from their prey which they use in self-defence. Probably, the most striking feature of these gastropods is the lack of a shell and presence of bright colours. These colours are usually a warning signal indicating the presence of deterrent chemicals some of them with pH values as low as 1 or 2. Some of these chemicals are biologically active and have been investigated for the treatment of several types of cancer diseases.

Flabellina pedata (Norway) Photo: M. Malaquias

Flabellina pedata (Norway) Photo: M. Malaquias

Polycera quadrilineata (Norway) Photo: M. Malaquias

Polycera quadrilineata (Norway) Photo: M. Malaquias

-Manuel

Door #13: Time for rejuvenation

Some of the fundamental existential impacts of the solar cycle were certainly understood by the Neolithic people who built Newgrange and were able to align the gigantic construction with the position of the sun rise at winter solstice. It was a point of return in “the wheel of time”, the annual cycle of “ageing, rebirth, and rejuvenation of Nature”. But how living individuals reproduce and come into being was a mystery right up to modern times. The Roman writer in natural history, Pliny (ca 70 AD), for instance stated that: “…after six months’ duration , frogs melt away into slime, though no one ever sees how it is done; after which they come to life again in the water during the spring, just as they were before. This is affected by some occult operation of Nature, and happens regularly every year. Mussels, also, and scallops are produced in the sand by the spontaneous operations of nature.”

Although the famous experiments by Francesco Redi had refuted some ideas about “spontaneous generation” in the mid 16-hundreds, the concept was still an important part of Lamarck’s theory of evolution that was opposed by his colleague Cuvier. Birth, of course, has also been a subject of discussions when pondering the mysteries of the Mary cult: was it really a case of parthenogenesis? What is really going on in the making of a body – the “process of incarnation”?

IMG_2861

Botryllus schlosseri (photo: K. Kongshavn)

Botryllus schlosseri, the “golden star tunicate”, is a common species on Atlantic coasts and recently has expanded its distributions to other seas as a result of human marine travelling. Researchers at the University of Bergen (Delsuc et al 2006) found that the tunicates belong to an evolutionary lineage that is the closest to vertebrates (including humans). B. schlosseri is relatively easy to keep in aquaria and has taught us a lot about reproduction and life cycles.

The similarity between the tunicates and the vertebrates are only apparent in the early stages of tunicate life. The larvae have a body with a tail containing the “chorda”, and a dorsal nerve tube, – both unique characteristic features of the Chordate animals (see figure 1A in in Voskoboynik el al. 2013). But these similarities disappear within a few hours when the free swimming larva has settled on some surface substrate and started the metamorphosis into the sack like body of an adult tunicate with a filter feeding gut. The larva was the result of sexual reproduction, the merged genetic material from sperm and egg. However, the metamorphosed individual will soon begin to reproduce asexually by budding off a copy of itself in a neighbouring position. The results of such multiplications are clusters of two to 12 genetically identical individuals in a star like pattern. These individuals, called zooids, are active for relatively short time, about a week at 19 oC, until they become inactive and gradually are reabsorbed by other cells in the colony while being replaced by new zooids. This sort of programmed cell death is called apoptosis and researches believe that studies of B. schlosseri can reveal some of what is going on with ageing and death of cells. It has been estimated that in an adult human body there is apoptosis of about 50 to 70 billion cells per day. Fortunately there is also renewal of cells, like in the growing colony of Botryllus. Very interesting things may happen if the zooids from different larvae are meeting up at the margins of two colonies with the so-called ampullae. Botryllus has a self-recognition system that is controlled by just one gene, but the gene occurs in many variants (alleles). If the alleles from two colonies are compatible, the blood vessel systems of the two colonies may grow together so that one colony is actually formed by zooids with different genetics. This is somewhat analogous to what happens between mother and child in the mammalian placenta. If the compatibility of two colonies is bad, they will “fight” each other in an inflammatory immune reaction. Such processes have special interest with respect to understanding immune systems and the outcome of organ transplantation.

It takes about 3-4 weeks for a colony to become sexually mature so that egg and sperm may be released in turn, avoiding self-fertilization. The duration of a colony is believed to be about 12 to 18 months in Norwegian waters (Moen & Svendsen 2008).

The reproduction system of B. schlosseri is just one of many different reproduction systems of animals. Where does individuality begin and stop? Would a zooid greet its neighbour with “Merry Christmas, I!”?

Suggested reading:

Delsuc et al. (2006). Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature: 439:965-968.

Manni et al (2007). Botryllus schlosseri: A model ascidian for the study of asexual reproduction. Developmental Dynamics 236(2): 335-352.

Moen & Svendsen (2008) Dyreliv i havet. KOM Forlag.

Tiozzo et al. (2006). Programmed cell death in vegetative development: Apoptosis during the colonial life cycle of the ascidian Botryllus schlosseri. Tissue and Cell 38 (3): 193-201

Voskoboynik et al. (2013) The genome sequence of the colonial chordate, Botryllus schlosseri Elife. DOI: 10.7554/eLife.00569.001

-Endre

Door #12: Plankton sampling with a vertebrate view!

HYPNO participating on an Arctic cruise by the Institute of Marine Research on RV Helmer Hanssen 17 Aug – 7 Sep 2015.

Julekalender Aino 2-001Most of the pelagic hydrozoans for HYPNO are collected with simple plankton nets, in the case of this Arctic cruise the double one you see in the picture. The net is towed vertically from above the bottom to the surface, bringing with it a representative sample of plankton – inclusive hydromedusae and siphonophores – from the entire water column. Standard plankton nets are generally lowered and retrieved at a speed of ~0.5 ms-1.

This particular station in the Arctic basin was over 2000 m deep, which means that a single tow takes more than an hour to complete. Sometimes waiting for the sample to come up can get a bit tedious – not at this station, though! With this beauty turning up right outside the hangar opening, the wait didn’t feel long at all!

SI_Arctic 24-8-2017 SI_Arctic 24-8-2016-Aino

Door #10: Old Stoneface

Today’s critter is a Lithodes maja, or Northern stone crab (Trollkrabbe in Norwegian). They live in depths between 80-500 meters, where they feed on algae, bottom dwelling animals, and of scavenging. They are much smaller than their relatives the King crab (Paralithdodes camtschaticus), reaching up to 150 mm across the carapace.

Despite the name, they are not true crabs – Brachyura, but rather Anomurans: “As decapods (meaning ten-legged), anomurans have ten pereiopods (legs), but the last pair of these is reduced in size, and often hidden inside the gill chamber (under the carapace) to be used for cleaning the gills. Since this arrangement is very rare in true crabs (for example, the small family Hexapodidae), a “crab” with only eight visible pereiopods is generally an anomuran.”  (Wikipedia)

Hello, there!

Hello, there! Shake hands? Photo: H. Hektoen

Martin encountered this one when participating on this year’s final MAREANO survey in the Barents Sea. MAREANO has been working on mapping the depth and topography, sediment composition, contaminants, biotopes and habitats through a combination of video stations and physical sampling of sediments and animals in Norwegian waters since 2006.

A cruise typically lasts between 10 and 20 days, and for most years MAREANO has had 2-3 cruises. The amount of stations and collected material is staggering!

The pile of samples halfway through the cruise Photo: M. Hektoen

The pile of samples halfway through the cruise Photo: M. Hektoen

A bucket of beam trawl collected material - sponges and Munida (squat lobsters) are dominant, together with our friend from the picture above. Photo: M. Hektoen

A bucket of beam trawl collected material – sponges and Munida (squat lobsters) are dominant, together with our friend from the picture above. Photo: M. Hektoen

Below is a map over the “full stations”, the stations that also include physical samples of biological material from grab, sled and trawl. These samples are split into fractions, some to be further processed by MAREANO, whilst others are bulk fixated without further analysis. The MAREANO-identified animals and unsorted fractions from these stations are deposited at the University Museum once MAREANO is done with them. We then continue to process them; decide which samples are significant, sort the unsorted fractions, implement material into the museum collections, and make it available for further research. For the interactive maps, go here.

Screenshot from mareano.no showing the bottom stations per year.

Screenshot from mareano.no showing the bottom stations per year.

-Martin & Katrine

Door #7: Shrimp and salad

Hippolyte varians Leach, 1814 in sea lettuce, Ulva lactuca

Hippolyte varians Leach, 1814 in sea lettuce, Ulva lactuca

This small shrimp can be found on the shore in small ponds at low tide. The species was recorded from Western Norway already in the early 19 hundreds by research curators in Bergens Museum (Appellöf, 1906; Grieg, 1927). Interestingly, as also observed by Appellöf (1906:page 124) individuals of this the species appear in many contrasting colour variants due to the ability of the the body to mimic the colours in the environment. The Norwegian name of Hippolyte varians is «sjøgressreke», which refers to its association with sea grass meadows (Zostera marina), in which a green body colour would seem to be an appropriate camouflage appearance. The specimen on this picture was caught in the littoral at the island Turøy amongst sea lettuce, Ulva lactuca. We see that there is a good colour match between the shrimp and the lettuce.

However, reddish, pink, brownish, black or even white colours have been are observed in other environments and it seems that at night time the shrimp may take a rest from the camouflage by attaining a transparent whitish blue appearance as shown by Moen’s picture here.

Knowledge about the distribution and biology of Hippolyte varians is summarised by C. d’Udekem d’Acoz. 

References

Appellöf, A. 1906. Die Dekapoden Crustaceen. Meeresfauna von Bergen 2(3): 113-238.

Grieg, J.A. 1927. Decapoda Crustacea from the west coast of Norway and the North Atlantic. Bergens Museums Aarbok 7:1-53.

Udekem d’Acoz, C. (1996). The genus Hippolyte Leach, 1814 (Crustacea: Decapoda: Caridea: Hippolytidae) in the east Atlantic Ocean and the Mediterranean Sea, with a checklist of all species in the genus. Zoologische Verhandelingen (Leiden) 303: 1-133.

-Endre

Door #6: Associated Amphipods

Amphipods are a group of small crustaceans where most of the species we know are benthic (bottom dwelling) and marine. But within the benthic habitat there are many niches, and one of the more intriguing is the many ways of living on or inside another benthic animal. A few species become parasitic (feeding on their host), but for the most species living like this, it does not look like eating the host is the main objective. In these cases we term the amphipods as “associated with a host”.

To document some of these associations, I have had a wonderful cooperation with an amazing underwater photographer this year. Lill Haugen has photographed amphipods associated with hydroids, and sampled the amphipods afterwards for us. Documenting this kind of association is almost impossible without the help of divers – if we are lucky enough to sample a hydroid with our normal sampling gear, the amphipods fall off. It is not easy spotting these small animals for a diver either, but Lill says that it becomes easier with practice.

An amphipod family at home. Photo by Lill Haugen, all rights reserved

An amphipod family at home. Photo by Lill Haugen, all rights reserved

This photo is from the Oslofjord, at 25 m depth. With the photos from Lill we are able to say that this particular amphipod (from the family Stenothoidae) looks like it keeps the hydroid as a family home. The parents sit on the “stem” of the hydroid, and their children sit on the tentacles of the “flower”. This might be both to provide extra protection and food for the amphipod-children. The adult amphipods are 5mm long, their children 3mm.

Earlier studies have shown that amphipods of the family Stenothoidae often associate with molluscs – we have found several different species living inside bivalves (shells). Other amphipods might associate with other crustaceans such as crabs, or with sponges, anemones or snails (gastropoda).

For most amphipod species we know nothing about their life-history and possible associations. But the more we examine them, the more we learn..

Suggested reading:

Tandberg, A.H., Schander, C., Pleijel, F. (2010) First record of the association between the amphipod Metopa alderii and the bivalve Musculus Marine Biodiversity Records, 3, e5, doi:10.1017/S1755267209991102

Tandberg, A.H., Vader, W., Berge, J. (2010) Studies on the association of Metopa glacialis (Amphipoda, Crustacea) and Musculus discors (Mollusca, Mytilidae). Polar Biology, 33, 1407-1418

Vader, W., Tandberg, A.H. (2013) A survey of amphipods associated with mollusks. Crustaceana 86(7-8), 1038-1049

Vader, W., Tandberg, A.H. (2015) Amphipods as associates of other crustacea: a survey. Journal of Crustacean Biology 35(4), 522-532

-Anne Helene

Door #5: A (so far) undescribed species of bristle worm

Diopatra sp

Diopatra sp. Photo: M. Hektoen

Pictured above is a cute polychaete (bristle worm) from the genus Diopatra. It was collected in Mauritania, and has been photographed using Scanning Electon Microscopy (SEM). Although I ended up describing 9 new species of Diopatra worms in my master’s thesis, many worms were still left undescribed, this is one of those.

-Martin