Category Archives: Artsprosjekt/NTI projects

Project ParaZoo: there is a critter inside my jellyfish!

ParaZoo (complete name ‘Metazoan parasites of non-crustacean zooplankton’) is one of the most interaction-focused projects currently running at the Invertebrate Collections of our Museum. This project, funded by the Norwegian Biodiversity Information Centre (Artsdatabanken), aims at studying the different animals that live together inside and on the surface of Norwegian jellyfish. This means that for the next two years we will be looking for tapeworms, flukes, roundworms, and amphipods as ParaZoo tries to answer the question of which of these organisms are associated with gelatinous hosts in Norwegian waters.

ParaZoo is focused on animal parasites and symbionts associated with jellyfish. Thse parasites include roundworms like Hysterothylacium aduncum (left, in Euphysa aurata), amphipods like Hyperia medusarum (middle, on Aequorera forskalea), and flukes like the members of family Didymozooidae (right, in Beroe gracilis). IC: Aino Hosia (left), Katrine Kongshavn (middle), Joan J. Soto-Àngel (right).

Besides jellyfish, arrow worms (Chaetognatha) are also members of non-crustacean zooplankton that host different types of parasites, like this H. aduncum roundworm (Nematoda). IC: Joan J. Soto-Àngel, Luis Martell.

Parasitism and symbiosis are extremely common life styles in the animal kingdom. In fact, some researchers believe that there may be more species of parasites than of free-living animals, given that each free-living species hosts many species of parasites (most of them unique) and those parasites also host their own parasitic tenants. Marine zooplankton is no exception to this trend, and many parasites and symbionts are expected to occur in copepods, krill, and gelatinous zooplankton. Jellyfish and arrow worms, for example, may be important hosts for flatworms and other helminths, yet our knowledge of these animals in Norway is very scarce.

ParaZoo’s logo includes two of the target taxa of the project: roundworms (Nematoda) and hyperiids (Amphipoda). The third main parasitic group covered is flatworms (Platyhelminthes), illustrated by the larvae of Derogenes varicus parasitizing Halopsis ocellata shown in the right side of this figure. IC: Joan J. Soto-Àngel, Luis Martell.

Understanding zooplankton parasites is important because many of them are going to be transmitted to fish, where they may cause serious diseases. To get a better overview of which critters live in non-crustacean zooplankton, ParaZoo will sample, record, and DNA-barcode specimens from all over the country. The collected animals will be included in our museum collections after being identified, documented photographically, and fixed in ethanol. We will then generate an open-access database of information including pictures and DNA sequences that will help with the identification of the parasites. Aquaculture facilities, fishermen, and managers of marine areas will benefit from this database to better plan and counter potential negative impacts caused by the parasites.

Flukes, such as Opechona spp, parasitize gelatinous zooplankton (in this case a sea-gooseberry Pleurobrachia pileus) as larvae called metacercariae. IC: Joan J. Soto-Àngel, Luis Martell.

The larvae of tapeworms (Cestoda) sometimes use jellyfish to reach their definitive hosts: fish. IC: Joan J. Soto-Àngel, Luis Martell.

ParaZoo is committed to present the diversity of jellyfish parasites to all those not familiar with them. In order to do that, we will regularly write entries here on the blog, as well as participate in several academic and not-academic meetings. The official info webpage for the project is available here, so don’t forget to check it out!

Luis

Fieldwork for two projects

The projects HypCop (bottom-associated copepods) and Hardbunnsfauna (Invertebrate fauna of marine rocky shallow-water habitats) went on a day-trip to three localities last week.

We made the most of the sunny and calm weather to visit a very exposed site on Sotra, where we collected in the tide pools and on the barnacle-encrusted intertidal.

Afterwards, we went to two marinas, Glesvær and Hjellestad, on a quest for some specific species the projects were in need of.

Back in the lab we set to work documenting the colours of the animals by photographing them alive, as the colours tend to face in fixatives.

It was nice day in the field, and it looks like we found the species we were after!

Follow us on Twitter and Instagram as @PlanetCopepod and @Hardbunnsfauna

– Jon, Cessa & Katrine

 

Hydrozoa course 2022 edition – as told by our MSc student Ana González

Last month, our project NorHydro (together with ForBio Research School of Biosystematics and project MEDUSA) organized a course on diversity, systematics and biology of Hydrozoa at the Marine Biological Station in Espegrend. Fifteen participants from 9 different countries came all the way to Bergen to learn more about these intriguing animals, share their ideas and projects, and start new collaborations. We asked one of the youngest members of the group –our highly motivated student Ana González– to share with us her thoughts about the course and her experiences with her MSc project. This is what she had to say:

When I started my Master’s Degree of Marine Ecology at the University of the Balearic IslandsI already knew about the existence of hydrozoans, but I had no idea how interesting these animals actually were. After some discussions, a lot of reading, and a fair amount of looking at pictures of hydroids and hydromedusae, I decided to work with these inconspicuous invertebrates for my MSc project under the supervision of Dr Luis Martell (University Museum of Bergen) and Dr. Maria Capa (University of the Balearic Islands). My project aims to evaluate whether we can use the benthic communities of hydrozoans as bioindicators of anthropogenic impact on the easternmost coasts of Mallorca Island, in the Mediterranean Sea.

Me on a sampling day looking for benthic hydrozoans at the marine reserve of Cala Gat (top). A closer view of the hard substrates I sample in the marine reserve (bottom left). The common hydroid Monotheca obliqua growing on Posidonia oceanica (bottom right). Picture credits: Maria Capa and Ana González.

Coastal areas are an attractive place to live, and these habitats provide ecosystem services that contribute greatly to the economy of the world, but a bad management of them can generate important damages and drastic changes in the ecosystem. One way to monitor environmental impacts in these habitats is by observing the response of their biological communities, so for this project I decided to study the assemblages of benthic hydrozoans in two opposite sites with different levels of anthropogenic impact: a harbor and a marine reserve. Moreover, I am comparing the communities in different seasons of the year, and I will analyze the assemblages growing on hard substrates (like rocks) and also those growing on a very important Mediterranean soft substrate: the endemic seagrass Posidonia oceanica.

Some hydroids common in my study area are those belonging to genera Clytia (family Campanulariidae, left), Sertularella (family Sertularellidae, middle), and Aglaophenia (family Aglaopheniidae, right). Picture credits: Ana González.

At the beginning, working with benthic hydrozoans was very challenging for me since the specimens I find are easily overlooked if one is not searching carefully for them. But the more time I dedicate to observe these organisms, the more curious I became about their identity and dynamics, and the easier it was to recognize them in the samples. However, identifying hydrozoans is a difficult task and I realized early that I needed some help, so I was very happy when the opportunity arose to apply for the course “Diversity, Systematics and Biology of Hydrozoa” in Bergen. There, I had the chance to meet some of the leading scientific experts in the field that helped me understand better the taxonomy and ecology of these animals. I couldn’t have imagined how much I was going to learn during the different activities of the course, but at the end these organisms were able to catch my attention and time flew between lectures, sampling trips, and laboratory work. One aspect of the course that I particularly enjoyed is the fact that it brought together participants with different trajectories in science, and everybody was happy to share their experiences in the world of hydrozoan science.

We had all kinds of weather during the course: rain, sun, wind, and even snow! Picture credits: Lara Beckmann and Joan J Soto Àngel.

We had the chance to sample on board the UiB research vessel Hans Brattström and we collected several planktonic and benthic hydrozoans in the fjords around the Marine Station. After each sampling event, we went back to the lab to sort the samples, find the hydrozoans and identify them to species. The plankton samples were usually the first ones to be processed, since hydromedusae are quite fragile and they tend to suffer morphological damages after being sampled with a net. We tried to identify all specimens to species level, with the aid of the stereomicroscopes and scientific literature with identification keys that the curse provided. The benthic samples were placed in aquariums to keep the organisms alive and then each of us had the opportunity to observe the specimens in our own stereomicroscope.

A sampling day on board of RV Hans Brattström. Top left: deploying the plankton net. Top right: a full cod-end with plankton sample. Middle right: students and teachers ready to leave the pier. Bottom: benthos sampling with the triangular dredge. Picture credits: Lara Beckmann, Sabine Holst, Luis Martell

Top right and left: students and teachers at the laboratory, identifying hydrozoans. Bottom left: searching for hydromedusae and siphonophores in the plankton sample. Picture credits: Sabine Holst and Lara Beckmann.

All together, we were able to find and identify more than 40 species from all the main groups of hydrozoans, including siphonophores, trachylines, leptothecathes, and anthoathecates. Working with hydromedusae was new for me and I discovered that observing them was more challenging than identifying the polyps, but it was also interesting in its own way. The hydrozoans that caught my attention the most were the polyps from the suborder Capitata, because their morphology is very different from the hydroids that I have observed in my MSc project so far. Capitate hydroids don’t have a protective theca, they possess tentacles that end up in a ball of nematocysts (so-called capitate tentacles), and they are absent from almost all my samples from Mallorca, which are instead dominated by hydroids belonging to the Order Lepthothecata.

Top: Colony of Sarsia lovenii (Anthoathecata: Corynidae) with gonophores (i.e. reproductive buds on the polyp body). You can also see the capitate tentacles, which end in a ball of nematocysts and are typical for suborder Capitata. Bottom: Colony of Clava multicornis showing also gonophores on the polyp body, but with filiform (non-capitate) tentacles. Picture credits: Lara Beckmann (top), Joan J. Soto Àngel (bottom).

My interest for hydrozoans, the great set of experts we had as teachers, and the charismatic animals that we collected were the perfect combination for me to have an incredible experience in this course. I think that courses like these are an excellent opportunity for beginners to learn with experts from different parts of the world. Interacting with all of these amazing people was very rewarding at both cultural and scientific levels, and this whole experience motivated me to keep on studying these interesting animals that are a part of the complex functioning of our oceans.

-Ana

Legendary colleagues meet once again; in search of Idzi Drzycimskis harpacticoids with help of R/V Hans Brattström

R/V Hans Brattström. Photo: Anne Helene Tandberg

Professor Dr. Idzi Drzycimski was one of the few who studied copepods here in Bergen, and in particularly the order of Harpacticoida. Drzycimski was foremost an occupied oceanologist and ichthyologist (the study of fish), but during his career he also described several new species from the order Harpacticoida. A few of those records are from Norway and are currently an important resource for our study of hyberbenthic copepods (HYPCOP). Drzycimski stayed in Bergen for a few years during the sixties and build up an extensive collection of copepods.  

 

Idzi Drzycimski 

Idzi Drzycimski was born December 5th, 1933 in Klonowo; a very small village North of Bydgoszcz, Poland. He studied Biology with a specialization in Hydrobiology at the Odessa University of I.I. Miecznikow. In 1957 he graduated and started working at the Sea fisheries Institute in Gdynia at the Oceanography Department, led by Professor Kazimierz Demel. Later followed by a career at the Department of Oceanography and Marine Biology at the University of Agriculture in Olsztyn, Faculty of Fisheries. In 1963 he obtained the degree of Doctor in natural sciences and in 1969 he habilitated. In 1985 he received the academic title of associate professor and eventually became full professor in the same year.

Drzycimski publication in Sarsia about new species of copepods.

Throughout his career he completed several internships in Germany, Norway, Italy and participated in several research cruises in the South Baltic Sea, North Sea and the Norwegian Fjords. During these cruises he collected and described 11 species new to science and 3 new types of marine crustaceans that have entered into the international zoological systematics. He promoted 8 doctors and continued to be the head of the department of oceanography at the faculty of sea fisheries. All while he published hundreds of articles and finally in 2001 he was awarded the Medal of Professor Kazimierz Demel.

 

 

Sampling for copepods 

As noted earlier, HYPCOP uses Drzycimski works for the project; his database, collection and publications from his years in Bergen are good source of information. Drzycimski published two publications with Harpacticoida findings from 1967 and 1968. He described 5 new species of Harpactcoida from West Norway, with sampling locations close to Bergen. Now, half a century later, we wanted to revisit these sampling sites to see if we could find the same or different species. Some off the sampling locations were from the middle of the fjords near Bergen and would therefore be excellent to revisit.  Drzycimski had sampled different spots from around the Krossfjorden, Bjørnefjorden and Raunefjorden. Most of these were deep sandy and muddy bottoms, from around 300-700m. Species that he had found there he described as Marsteinia typica, Pseudotachidius vikingus, Marsteinia similis, Leptopsyllus elongatus and Dorsiceratus octocornis. These all have the typical small body sizes of around 400-800 μm and are very inconspicuous and hard to find with the naked eye.  

 

Brattström & Drzycimski 

 

Beautiful day for sampling benthos. Photo: Cessa Rauch

With help of research vessel Hand Brattström and researcher Anne Helene Tandberg, we managed to sample two locations in the Krossfjorden between 400-700m depth that were sampled before in the 60s by Drzycimski. Prior to the sampling day we made a hit list of 4 locations that we wanted to revisit, but two of those locations got inaccessible. In the span of 60 years a lot of things have changed, places that once where easy accessible for sampling are nowadays littered with e.g. fishing gear waste. Which would destroy our plankton nets when they get stuck in this. On top off that Drzycimski also did not describe in his papers how he managed to collect his copepod samples, but most likely this was done with a sled, and in this case we would be using the R.P. sled. The R.P. sled is an epibenthic sampler. That means that it samples the

Anne Helene Tandberg and crew working on retrieving samples from the RP-sled. Photo: Ellen Viste

animals that live just at the top of the (soft) seafloor with a fine plankton net, if you want to read more details about the R.P. sled you can read that here. Once again our sled expert Anne Helene would join us on this trip to help HYPCOP with sampling and also to be on the lookout for sampling for amphipods. After the sled collected the benthic animals, we needed to filter the sled sample by a process which is called decanting (See the YouTube movie in this blog).  With decanting you separate the mixture of the animal soup from the liquid by washing them in a big bucket, throw the liquid through a filter and collect the animals carefully to avoid damaging them.  

 

 

 

 

Drzycimskis visit at the museum was during the years of Hans Brattströms Professorship at the University of Bergen in marine biology (1962-1978). During those years Brattström started the scientific journal Sarsia, where Drzycimski published his copepod species description’s. There is not much about whether the two professors knew each other well, but it is very likely. And so it was special that few generations later, Hans Brattström once again facilitates research for Drzycimski, although this time as a research vessel and a new generation of scientists working on marine benthos.  

New generation of scientists working on marine benthos. from the left: Anne Helene Tandberg, Francisca Carvalho, Cessa Rauch, Ellen Viste and Justine Siegwald

Cessa & Anne Helene 


Literature:

Drzycimski, I. “Zvvei neue Harpacticoida (Copepoda) aus dem Westnorwegischen Kdstengebiet.” Sarsia 30.1 (1967): 75-82. 

Drzycimski, I. “Drei neue Harpacticoida aus westnorwegen.” Sarsia 36.1 (1968): 55-64. 

Bryozoa-workshop at Espegrend

February 14th -18th 2022

The Bryozoa are maybe not the most famous of animals, so let’s start with a quick rundown: Bryozoa, also known as Polyzoa, Ectoprocta, or moss animals (mosdyr, på norsk) are a phylum of aquatic invertebrates. Bryozoans, together with phoronids and brachiopods, have a special feeding structure called a lophophore, a “crown” of hollow tentacles used for filter feeding, which you can see in action in the video Tine captured:

In Norway we have 292 species registered, of which 281 are marine (Kunnskapsstatus for artsmangfoldet 2020, pdf here). It is estimated that the actual number of species present is higher. Further, several known species are considered “door knocker species” that may establish here within the next 50 years.

Bryozoa mostly live in colonies made up of tiny individual animals called zooids, which grow in a variety of shapes, and some of them provide structural habitats for other species. They are food for many other animals, namely nudibranchs, fish, sea urchins, pycnogonids, crustaceans, mites and starfish. Marine bryozoans are often responsible for biofouling on ships’ hulls, on docks and marinas, and on offshore structures. They are among the first colonizers of new or recently cleaned structures, and may hitchhike to new places with marine traffic. (Bonus: they have a super interesting fossil record, and this can be used to tell us more about the world in the way back!)

A few of the shapes the colonies can grow in. Pictured are 1: Membraniporella nitida 2: Bugula sp. 3: Flustrella hispida 4: Crisia eburnea

They are one of the focus groups of Hardbunnsfauna: there is still a lot we do not know about them!

Ernst Haeckel – Kunstformen der Natur (1904), plate 23: Bryozoa. Public domain, accessed through Wikipedia

Planning in a pandemic is not easy, and we have had to postpone our plans for this gathering several times. The second week of February we could finally gather our “Team Bryozoa” here in Bergen for a week of in-depth studies of these fascinating animals.

Team Bryozoa (centre), from left Piotr, Mali, Jo and Lee Hsiang, and some of the animals they studied. Group photo by Piotr Kuklinski

In total we were 11 participants;
University Museum of Bergen: Endre, Jon, Tom and Katrine,
Natural History Museum in Oslo: Lee Hsiang and Mali,
NTNU University Museum: Torkild, Tine (MSc. student) and Tiril (MSc. student),
and our two visitors from abroad:
from the Institute of Oceanology, Polish Academy of Sciences came Piotr,
and from the Heriot Watt University (Orkney Campus), Joanne.

The main focus of the workshop was to get as many samples and species as possible identified, work though the DNA barcode vouchers from samples submitted in advance and reach a consensus on which species the dubious ones were, to network with our colleagues, and to include the students in the work and the team. It all went swimmingly, and a we had a very productive and enjoyable week!

check out @hardbunnsfauna on Instagram for more!

 

We set up camp on Espegrend Marine Biological station, and combined long days in the lab studying material collected throughout the project with shorter trips out on R/V Hans Brattstrøm.

Here we collected live colonies, introduced the students to various collecting methods, and let everyone catch some fresh fjord air.

 

Tine (top left) working together with Mali in the lab and in the field.

 

 

Tine is doing her master thesis on the species distribution of Bryozoa in shallow water along the Norwegian coast.

During the workshop she got the chance to have some of the difficult species identifications verified by the experts,  and she prepared a plate of 95 tissue samples that will be DNA barcoded though NorBOL.

 

 

Tiril, top left, together with Jon on the ship and working in the lab.

 

We also had Tiril with us, who is just starting out on what will become a thesis on ascidians (sea squirts), most likely with a focus on species in the genus Botryllus and Botrylloides. 

She worked together with Tom, getting familiar with the literature and the methods used for working on the group. Like Tine, she will be using a combination of traditional morphology based methods and genetic data.

 

A few impressions from the week

Going forward we’ll first send the plate of tissue samples to CCDB to be sequenced, fingers crossed for good results! During the week, *so many* samples were identified, so we will certainly be preparing more plates during the spring. All the identified samples will be included into the scientific collections of the museum.

Thank you so much to all the participants for their efforts!

-Katrine

2021 in review for Hardbunnsfauna

Another year of our “Hardbunnsfauna”-project;  Invertebrate fauna of marine rocky shallow-water habitats: species mapping and DNA barcoding (funded by the Norwegian taxonomy Initiative) is coming to an end.

I opted for an easy way to show some of the activities we’ve had on our by selecting a post from each month on our Instagram account to share.

Do give us a follow, if you aren’t already: we are @hardbunnsfauna on both Instagram and Twitter!

Click on the images to expand them

January: Field work on R/V Hans Brattstrøm in gorgeous (but FREEZING) weather

February: our report from field work in Saltstraumen got published

March: Workshop at Espegrend field station together with the projects HypCop and NorChitons

April: results are coming in on some of the DNA barcoding we are doing. Sponges (like the blue one here) are tricky to barcode, but we are getting some interesting results!

May: we have also barcoded a lot of other groups, including a substantial amount of microgastropods (tiny snails)

June: The first master student from the project successfully presented his thesis

July: We played marine invertebrate bingo (did you get a full set..?)

August: Fieldwork in the neighborhood; we sampled invertebrates from the fjord clean-up SUB was doing in Puddefjorden

September: We participated at an event at Os together with Havkollektivet, introducing the invertebrate and vertebrate locals to each other

October: Katrine was on a research cruise with limited internet, but did sample many interesting critters for the project

November: Field work in Haugesund, where Slettaa Dykkerklubb arranged a course on marine biology for divers

December: Pre-end-of-year-hectic-season, but we are enjoying the contributions coming in (physical and electronic) from our wonderful citizen scientists!

Then we wish you all some very
-Katrine

Hello Jorunna artsdatabankia; new sea slug for Norway and to the World!

In 2018 former master student Jenny Neuhaus started working under supervision of Manuel Malaquias and Cessa Rauch on the sea slug species Jorunna tomentosa.

Jenny presenting her work on Jorunna tomentosa on the world malacology conference in the USA

It was known already for some time that this sea slug occurs in a wide variety of colour patterns (morphotypes). With the increased discovery of cryptic species due to improved molecular techniques we wondered if we were dealing with a single species or several cryptic lineages.

For a long time the different colours and patterns were regarded as natural variation within the species, consisting of shades of grey-white, cream-yellow, pale orange and either plain of blotched with light brown or chocolate brown spots of various sizes, distributed either irregularly or in lines, or combination of both!

But it was this variety that tossed up the question eventually whether we are dealing with a single species after all.

The diversity within Jorunna tomentosa

The nudibranch genus Jorunna consisted of eleven recognized species occurring in European waters. At that time, Jorunna tomentosa (Cuvier, 1804) was the only known species of this genus to be found along the Norwegian coastline. Prior to the study, the northernmost record of J. tomentosa was listed from Vestvågøy, Lofoten, Nordland. Today we know that the species is found at least 550 km further North in the Magerøysundet, Troms og Finnmark.

Jorunna tomentosa has an oval-elongate body shape with different colours varying from grey-white to cream-yellow and pale orange. They can reach a size up to 55 mm and occur at depths from a few meters down to more than 400m. They feed on sponges of the species Halichondria panicea, Haliclona oculata and Haliclona cinerea. J. tomentosa can be found from Finnmark in northern Norway, southwards along the European Atlantic coastline, the British Isles, the French coast, Iberian Peninsula, Mediterranean Sea up to Turkey, and the Azores and Canary Islands. Besides the species has even been recorded from South Africa.

Jenny Neuhaus in the lab of Prof. Marta Pola in Spain dissecting specimens for anatomical studies

Jenny compared specimens from different parts of the world, including Norway, Ireland, Spain, France, Portugal including the Azores and South Africa. She took tissue samples for genetic studies and dissected them for their anatomy.

For the genetic studies we selected three different gene markers called COI, 16S and H3 to check how these morphotypes compare with each other and evaluate the meaning of genetic distances.

From the genetic distance analyses, it became clear that we were dealing with a “cryptic species complex”, as a clade of three specimens showed substantial genetic difference compared to J. tomentosa but seemed morphologically indistinguishable from another at first glance.

As sea slug anatomy is a matter of complexity, especially since each animal possesses both male and female reproductive organs (hermaphrodite), the expertise of Prof. Marta Pola from the University of Madrid was essential to conduct detailed morpho-anatomical studies. We were able to detect structural differences in the rasping tongue (radula) and parts of the reproductive apparatus.

Meet Jorunna artsdatabankia!

Jenny sequenced the DNA of 78 specimens of which 60 where successful for using in the final phylogenetic analyses. Her results supported the presence of a new Jorunna species, and in addition a possible case of incipient speciation in J. tomentosa with two genetic lineages morphologically undistinguishable. The new Jorunna species was based on material collected from Norway (Kristiansund, Frøya & the North Sea).

Jorunna artsdatabankia

J. artsdatabankia has a plain white to yellow background colour accompanied by small brownish spots irregularly placed on the body surface. Its distributional range is so far restricted to Norway, being recorded from Skogsøya, Frøya (Trøndelag), Brattøya, Kristiansund (Møre og Romsdal), and a North Sea plateau (60.726944 0.505371) with a depth range from 27 to 350 meters, suggesting a sympatric occurrence with J. tomentosa.

Jorunna artsdatabankia in comparison to Jorunna tomentosa

The name attributed to this new species was chosen to recognize the work of the Norwegian Biodiversity Information Centre (Artsdatabanken) for their instrumental role promoting and supporting biodiversity research in Norway.

– Cessa Rauch, Jenny Neuhaus, Manuel Malaquias

 

Sea slugs of Norway Instagram: @seaslugsofnorway

Sea slugs of Norway Facebook: www.facebook.com/seaslugsofnorway


The paper can be found here:

The genus Jorunna (Nudibranchia: Discodorididae) in Europe: a new species and a possible case of incipient speciation. Jenny Neuhaus, Cessa Rauch, Torkild Bakken, Bernard Picton, Marta Pola, Manuel António E Malaquias (2021), Journal of Molluscan Studies, Volume 87, Issue 4, December 2021, eyab028, https://doi.org/10.1093/mollus/eyab028

Sampling together in the Sognefjord

From 09 to 13th of May different artsdatabanken projects within the Natural history museum joined efforts during a fieldwork trip to Hjartholm located at the Sognefjord.

The Sognefjord is an interesting fjord for sampling as it is the largest and deepest fjord in Norway and the second largest in the world! This often results in some unique fauna, especially at greater depths. Therefore HYPCOP (Hyper benthic copepods), NORHYDRO (Norwegian Hydrozoa), AnDeepNor (Annelids from the Deep Norwegian Waters) and Hardbunnsfauna (rocky shore invertebrates) travelled toward the small town Hjartholm were we set up laboratory and living space for sampling and processing fresh material.

Hjartholm is located towards the exit of the Sognefjord. From here we would do shallow and deep sampling with help of Research Vessel Hans Brattstrøm

Team members from different projects, Norhydro, HYPCOP, hardbunnsfauna and AndeepNor in front of the boathouse that was transformed into a lab for the occasion

Boathouse communal area turned into a temporary lab

AnDeepNor was on the quest of collecting marine bristle worms (annelida) from the deepest part of the Sognefjord, about 1000m deep.

AnDeepNor researchers from ltr; Miguel Angel Mecca, Tom Alvestad, Nataliya Budaeva, Jon Kongsrud

Jon Kongsrud with the grab

This would be done with the help of research vessel Hans Brattstrøm and a so-called grab. A grab is a device that looks like a clamshell made out of heavy metal. It would be dropped in the water open, and once touching the bottom it would close and grab soft bottom sample.

Unfortunately, on the first day some important machinery for collecting deep samples broke after the third grab. And therefore, AnDeepNor was stuck with only 3 samples for the remaining of the fieldwork days. The good news however is that they did find a great diversity of worms in the only 3 grab samples they found.

 

Project leader Nataliya with in her hand a plate with clipped tissues from her worms

Once the worms were sorted, preliminary identified and catalogued small tissue was clipped of 96 specimens for barcoding at the University of Bergen DNA laboratory.

All the results of this will be publicly available at the end of the AnDeepNor project in October this year. We are looking forward to their results!

 

 

 

 

NorHydro has been working hard on collecting hydrozoan samples from different localities in Norway.

NorHydro researchers from ltr Luis Martell and Joan Soto Angel

This time they were more than happy to join the possibility of getting some seriously deep samples from the Sognefjord. With their plankton net they went sampling up to 1200m, which resulted in some beautiful specimens

Left: Margelopsis hartlaubii, right: juvenile Melicertum octocostatum

They also took the opportunity to collect some shallow-water benthic hydroids, just in front of the lab where there was a small dock for boats. In the lab they set up a photo-studio to make some beautiful macro images of their collected specimens for everyone to enjoy.

Left: Laomedea flexuosa; top right: Bougainvillia muscus; bottom right: Eudendrium sp.

HYPCOP (Picture 9. Team HYPCOP with ltr Francisca Carvahlo, Cessa Rauch and Jon Kongsrud) focus this time was mainly shallow water around the Sognefjord by snorkelling (picture 10. Sampling for Hardbunnsfauna and HYPCOP by means of snorkelling), we sampled from 4 different stations and as you can guess, there were copepods in all of them.

Team HYPCOP with ltr Francisca Carvahlo, Cessa Rauch and Jon Kongsrud

Sampling for Hardbunnsfauna and HYPCOP by means of snorkelling

However, some locations had definitively more diversity than others, this mostly had to do with the site being more exposed, or whether there was a lot of freshwater run-off from land that would influence the sites salinity. The fresh collected copepods were photographed and are now ready to be prepared for barcoding in order to determine the species. And although small, they can be very beautiful as well, just not always easy to photograph such active critters.

Even though we had to deal with some gear equipment failure, we still managed to have a very productive week of sampling, in which all the participating projects got their hands-on valuable specimens from the amazing Sognefjord!

Interested to follow up with these projects? You can find us across all social media platforms (Twitter, Instagram and Facebook @hardbunnsfauna, @planetcopepod #NorHydro #AnDeepNor), see you there!

-Cessa, Nataliya & Joan

Sun is out, scientists are out!

 

Staff engineer Lina Ljungfeldt with the Bladderwrack algae Fucus vesiculoses in Glesvær, Norway. Photo Bjarte Kileng

With few good weather windows here in the West coast we need to take the opportunity for collecting when it arises. Tuesday afternoon (27.04)  we took our chance to sample in Glesvær for some fresh copepods and Bladderwrack (Fucus vesiculoses) for researchers from the University of Trier.

The team consisted of staff engineer Lina Ljungfeldt, PhD student Justine Siegwald, Citizen scientists Bjarte Kileng and head engineer Cessa Rauch.

The Tuesday afternoon sampling team from ltr Lina Ljungfeldt, Cessa Rauch and Justine Siegwald. Photo BK

Picture of the photographer himself, citizen scientist Bjarte Kileng joining the expedition team. Photo Justine Siegwald

We chose Glesvær because we needed easy access to the shore with rockpools and lots of algae. Researchers from the University of Trier (Germany) are collecting Fucus vesiculoses from different parts in the world to study the community of animals and bacteria that are associated with the algae. We were happy to help out while also collecting fresh copepods for HYPCOP (@planetcopepod).

We needed 20 individual algae pieces that needed to be cut from the substrate and any epifauna big enough to the naked eye had to be removed.

Justine Siegwald picking out individual Fucus vesiculoses algae from the rocky shore. Photo BK

After collecting the algae in the green baskets we needed to rinse the algae and put them in bags afterwards. The algae were transported back to the museum on ice and stored in the freezer waiting for their final journey to Germany.

Cessa Rauch rinsing the algae, dry suit came in good use! Photo JS

HYPCOP member Cessa Rauch went along and collected some copepods from the beautiful rockpools.

Cessa collecting copepods from the rockpools in Glesvær. Photo BK

Rockpools are great source for easy benthic copepod collecting. When low tide leaves the rockpools exposed, many small marine organisms stay ‘trapped’ in the cracks of the rocky shores. Just sampling some small algae and the water itself contains many benthic organisms like our copepods. The copepods, along with the algae, were taken back to the museum and sorted based on their morphotype. These fresh specimens will later be used for DNA extraction and barcoding.

If you wish to see how beautiful benthic copepods are than don’t forget to follow @planetcopepod on Twitter https://twitter.com/planetcopepod and Instagram https://www.instagram.com/planetcopepod/ or become a member of or Facebook group, for the latest updates! https://www.facebook.com/groups/planetcopepod

-Cessa

 

 

Copepod girls!

Copepod girls; Cessa Rauch (left) and Francisca Carvalho (right) working on copepods, photo Katrine Kongshavn).

International Woman’s Day was on 8th of March and this coincided this year with the start of a great fieldwork trip with an (almost) girl only expedition team!

Multiple research projects headed towards Espegrend Marine Biological field station in Bergen, to spend the week collecting and sorting specimens. The group consisted of representatives of Hardbunnsfauna (rocky shore invertebrates @hardbunnsfauna), Norchitons (Norwegian chitons @norchitons) and HYPCOP (copepods @planetcopepod).

From ltr; HYPCOP (Cessa Rauch), Norchitons (Nina Mikkelsen), HYPCOP (Francisca Carvalho), Hardbunnsfauna (Katrine Kongshavn). Photo: Jon Kongsrud

The plan for the week was to have access to the research vessel Hans Brattström while also working from the field station on the mainland. This would give us very good opportunities for reaching different sampling habitats. But as always with fieldwork expect the unexpected; unfortunately, after day 1, our R/V Hans Brattström got motor problems, so the planned dredge sampling did not happen. It is good to be creative in those situations because we still managed to get a lot of sampling done by collecting at the piers where the research vessel was docked and in front of the research station itself.

View from the research station in Espegrend, photo Cessa Rauch.

Sampling from the pier in front of the research station, photo Francisca Carvalho

On one of the days (when the sun was out!) we took the small research boat from the field station to explore the habitats of the nearby islands and do some shallow sampling there.

Out sampling with the small boat, photo Cessa Rauch

Once we arrived at the island of Søre Egdholmen we needed to dock the small boat without a pier; rest assure this gave interesting scenarios with being half in the water while the rest of the team and the equipment was in the boat.

Docking the small boat without a pier, photo by F. Carvalho

Once on the island we started to collect lots of material; for copepods, especially shallow benthic ones, that is quite a simple task. The best way is to use a fine meshed net, like a plankton net, and grab a lot of substrate like algae, some sand and small gravel. A lot of species basically stick to the substrate and with the plankton net have no way to escape. By keeping the plankton net with substrate in a bucket with seawater the samples stay fresh the longest.  Back to the marine biological station we kept the freshly collected samples in tanks with good saltwater circulation (which the station has access to in the laboratories).

Well let me tell you, we had such nice samples off copepods, not only just the quantity (because with copepods that is never a real issue), but very diverse too.

A drop of copepods, rich diversity from Espegrend. Photo: Cessa Rauch

Every single morphotype was being documented while they were still alive to keep the colors intact.

Overview of the different morphotypes we collected

And then numbered, labeled and fixated in ethanol for the collection.

Copepod collection

The goal for HYPCOP this week was to collect and register fresh copepod samples for DNA barcoding.

Back in Bergen we brought our copepods to the laboratory for DNA barcoding.

Their DNA is, as we speak, on their way to the sequencing center in Canada to become part of the Barcode of Life Data System that eventually everyone will have access to. Curious to see what this platform is all about, check out http://www.barcodinglife.org.

Until next time! Don’t forget to follow @planetcopepod on Twitter https://twitter.com/planetcopepod and Instagram https://www.instagram.com/planetcopepod/ or become a member of or Facebook group, see you there! https://www.facebook.com/groups/planetcopepod

-Cessa & Francisca