Author Archives: katrine

Door #20: How many undescribed bristle worms live in Australian waters?

The answer is, of course, “we don’t know”. But we *can* say that Australian polychaete fauna is largely undescribed. As an example, 91 new species and 67 new records of polychaete worms were found in the vicinity of a single small island at Great Barrier Reef as a result of a joint effort of 16 polychaete experts that spent two weeks at the Lizard Island Research Station of the Australian Museum in 2013.

Not only the Great Barrier Reef polychaete fauna is poorly studied, various areas of Australian east coast apparently also have numerous undescribed species especially in the deeper waters. Here you can see few examples of recently described new species of bristle worms from Australian.

Rhamphobrachium nutrix Paxton & Budaeva, 2015 from the Lizard Island, 9-36 m

Rhamphobrachium nutrix Paxton & Budaeva, 2015 from the Lizard Island, 9-36 m

Paradiopatra piccola Paxton & Budaeva, 2013 from eastern Australia, 124-500 m

Paradiopatra piccola Paxton & Budaeva, 2013 from eastern Australia, 124-500 m

Undescribed species from the genus Onuphis from the Lizard Island, intertidal (Photo: A. Semenov)

Undescribed species from the genus Onuphis from the Lizard Island, intertidal (Photo: A. Semenov)

Anchinothria parvula Budaeva & Paxton 2013 from eastern Australia, 244 m

Anchinothria parvula Budaeva & Paxton 2013 from eastern Australia, 244 m

Neosabellides lizae from the intertidal

Neosabellides lizae from the intertidal (Alvestad T., Budaeva N. 2015)

Suggested reading:

Special Volume Zootaxa 4019 (Open Access) Coral reef-associated fauna of Lizard Island, Great Barrier Reef: polychaetes and allies http://www.mapress.com/zootaxa/list/2015/4019(1).html

Alvestad T.Budaeva N. 2015. Neosabellides lizae, a new species of Ampharetidae (Annelida) from Lizard Island, Great Barrier Reef, Australia. Zootaxa, 4019: 61–69.  http://dx.doi.org/10.11646/zootaxa.4019.1.6

Paxton H., Budaeva N. 2015. Minibrachium, a new subgenus of Rhamphobrachium (Annelida: Onuphidae) from Australia with the description of three new species. Zootaxa, 4019: 621–634. http://dx.doi.org/10.11646/zootaxa.4019.1.21

Budaeva N., Paxton. H. 2013. Nothria and Anchinothria (Annelida: Onuphidae) from Eastern Australian waters with a discussion of ontogenetic variation of diagnostic characters. Journal of the Marine Biological Association of the UK, 93: 1481–1502.  http://dx.doi.org/10.1017/S0025315412001956

Paxton H., Budaeva N. 2013. Paradiopatra (Annelida: Onuphidae) from eastern Australian waters, with the description of six new species. Zootaxa, 3686: 140–164.  http://dx.doi.org/10.11646/zootaxa.3686.2.2

Nataliya Budaeva’s web page: http://nataliyabudaeva.wix.com/nataliyabudaeva

-Nataliya

Door #19: The amphipods with the pointed hoods

Unravelling the mysteries of Amphipods

Unravelling the mysteries of Amphipods

This last week Ania and Anne Helene have been filling the lab with details about antennae, epimeral plates and hairs (setae) on all appendages imaginable and unimaginable. The first dive into the west-African amphipods has been made, and we chose to focus on a family that is easily distinguished from the rest of the amphipoda: the Phoxocephalidae.

This family was first described by G.O. Sars in 1891, and in the northern Atlantic it is a friendly group to examine – it does not have too many species. On a world-basis, however, there are 369 species of Phoxocephalide described, within 80 genera (as of dec 14 2015). The whole groups is easily recognized by their “pointed hoods” – the head is drawn forwards just like a hood that is pulled as far to the front as it goes.

 

Ania has much of her previous experience from the Antarctic and Anne Helene has worked in the Arctic, so west-African waters seemed a good place to meet – if not literally then thematically. Being physically in the same lab is probably the best way to collaborate on examining small animals, and we had a week of long and happy days in the lab.

A Basuto stimpsoni from Guinea Bissau. Photo A.H. Tandberg

A Basuto stimpsoni from Guinea Bissau. Photo A.H. Tandberg

Why did we think the Phoxocephalidae would be a good starting point for examining the amphipod-fauna of the West-African waters? There were moments during the last week we asked ourselves this question. There are some reasons, though. To be able to identify species of amphipods you normally have to examine a collection of characters such as the antennae, sections of the different legs (Amphipods do have a lot of legs!) and the different sideplates (for example the epimeral plates).

In difference with many other amphipod groups the Phoxocephalids do not have a lot of appendages that are sticking far out of the main body, so there are not so many pieces that break off ethanol-preserved specimens – and that gives us a bit easier job.

But there are not many studies of the smaller crustaceans from these waters previously, so we were not expecting to be able to put names on much of what we were looking at. This prediction proved true – we have found one already named species (Basuto stimpsoni Stebbing, 1908) in all our samples. In addition to this we have found what we think are 27 other species – but we do not have a name for most of them. For many we don´t even have a genus name.

How will we continue with this group? The first step is to see if our 28 putative species really are different – for this we will first map their DNA barcode (COI). Depending on what results this gives us, we will be able to see how many new species we end up with.

There is definitely more to come from this study, and we promise to write about it when we know more (that will, however, not be in this advent calendar)…

-Ania and Anne Helene

Door #18: A photosynthetic animal

You may already be confused with the title, but you did read it well! Animals can do photosynthesis and most incredibly some species are more efficient than plants or algae. Yet, this achievement is not for all; you must be special, you must be unique…, you must be a sapsucking slug!

Ercolania sp. feeding inside algae (Photo: M. Malaquias)

Ercolania sp. feeding inside algae (Photo: M. Malaquias)

This is a process named kleptoplasty (= chloroplast symbiosis; see Door #2 of this calendar series) where the slug while feeding from the plant tissue does not digest the chloroplasts but instead migrate these organelles to specific parts of the body where they remain active producing sugars that become available to the slug.

There are two species of sapsucking slugs with a remarkable life-history. The spectacular and rare tropical species Ercolania endophytophaga and E. kencolesi both only known from Australia do not retain chloroplasts as other species do, but they do feed on algae, however, only on a very special kind – the green grape-algae of the Order Siphonocladales. These are syncytial algae made of massive single cell grape-shaped structures which the animal pierce to move in and leave inside until “green-matter” is available.

detail of Ercolania sp. inside algae (Photo: M. Malaquias)

detail of Ercolania sp. inside algae (Photo: M. Malaquias)

I was very fortunate to find one of this slugs back in January 2014 in southern Mozambique. Usually one has to collect a large quantity of algae to carefully search through later on in the lab and hope for the best! However, in that afternoon while sampling in a beautiful shallow tidal tropical reef in Paindane sluggishly looking at a facies of a “grape-alga” growing over a boulder I suddenly notice a tiny animal moving gently inside the algae. I grabbed a few bunches of algae into my sampling jar to look at later on…, and voilà… I was rewarded with a few specimens of one of this spectacular and difficult slugs most probably an undescribed species, the first from the Indian Ocean.

Ercolania sp. after removal from algae (Photo: M. Malaquias)

Ercolania sp. after removal from algae (Photo: M. Malaquias)

-Manuel

Door #17: A marriage of art and science

What does an organism really look like – and how does that organism make us feel, what thought does it inspire, and what beauty is hidden within their complex structures?

Some of Pippip Ferner ́s studies from the cruise onboard G.O. Sars. (Small paintings  20x20cm in acrylic paint, ink and pencil) ©

Some of Pippip Ferner ́s studies from the cruise onboard G.O. Sars. (Small paintings 20x20cm in acrylic paint, ink and pencil) © Pippip Ferner

Anne Helene and Pippip look at the same organsims, but from different perspectives. Anne Helene works as a scientist at the Invertebrate Collections and Pippip Ferner is an artist who is very inspired by marine biology and marine organisms in her work.

As biologists we have the privilege to see many of the wonders of nature up close as part of our job. But how can we share that with the rest of you – all of us who didn´t go to that cruise, or don´t study that exact organism?

© Pippip Ferner

© Pippip Ferner

Historically, artists used to be part of most large projects – as documentarists. This tradition still stands, but now it is often the scientists that make drawings of what we see, and often more importantly: what details are the important ones for the scientific studies. Where does the pure artistic (non-documentary) work fit now?

 

 

 

Pippip´s long interest in marine biology has lead to her participation on a scientific cruise with MAREANO, where she met Anne Helene. Being on a cruise and observing animals live, talking with the scientists and see (part of?) what they see lead to a series of sketches that resulted in many paintings, sculptures and prints.

Amphipods by Pippip Ferner. Ink on paper. © Pippip Ferner Want to see more?  www.pippip.no

Amphipods by Pippip Ferner. Ink on paper. © Pippip Ferner Want to see more?
www.pippip.no

She wants to look at the marine biology from a non-scientific view point, to look at details or whole organisms and see new shapes and explore textures. Where the scientist has to stick to the strict morphology of the organism, Pippip can look at what is not seen.

Ferner had no idea in advance that an  amphipod had personality...  © Pippip Ferner

Ferner had no idea in advance that an
amphipod had personality… © Pippip Ferner

Here are some of Pippips examinations of amphipods – and some photos and scientific drawings of some amphipods that might have been inspiring her.  In Pippips own words, she aims to “ contrast beauty against ugliness, weak against strong, small againt large.” This might make it both easy and difficult to recognise her objects, and her pictures might be both simple and complex at the same time.

Much of our scientific work is to observe minute details in our chosen organisms. Looking at amphipods scientifically means looking for serrations along curved ridges, counting small hairs (seta) and seeing if they have split ends, looking at shapes of mouthparts and lengths of feet and antennae, and documenting this with photos and drawings.

Example of scientific drawing of  mouthparts.  Exitomelita sigynae Tandberg, Rapp et al, 2011

Example of scientific drawing of
mouthparts. Exitomelita sigynae
Tandberg, Rapp et al, 2011

Having the luck and joy of seeing these same organisms represented artistically can give an added dimension to our work. It also gives the possibility for all the rest of you to get another gate to come in contact with our organisms through.

Maybe taking both views into account will help us learn and understand even more? The scientific and artistic views can supplement each other, and have been doing so already for generations.

Metopa boecki  (live) Photo:  Anne Helene Tandberg

Metopa boecki (live) Photo: Anne Helene Tandberg

The collaboration between Pippip and Anne Helene continues – yesterday Pippip visited the Invertebrate Lab, to get new ideas and inspirations for further artistic examinations… We are sure more beautiful, inspiring and maybe provoking representations of marine life will continue to come from this collaboration. Be sure to follow us!

– Anne Helene and Pippip

Door #16: First molecular-based phylogeny of onuphid bristle worms

Onuphidae are marine bristle worms with very rich external morphology and outstanding diversity of life styles within a single polychaete family. Onuphids can be very abundant in some marine biotopes, modifying the environment by their complex ornamented tubes and influencing the structure of benthic communities. They are very widely spread in the ocean inhabiting various biotopes from the intertidal zone down to hadal depths. Onuphids are widely harvested as bait sustaining local fisheries in southeastern Australia, Mediterranean and Portuguese coasts and are even commercially farmed with the full reproductive cycle from fertilization till fully-grown worms (up to 30 cm in length) in aquaculture facility.

Nothria otsuchiensis - a bristle worm from NSW, Australia (author N. Budaeva)

Nothria otsuchiensis – a bristle worm from NSW, Australia (author N. Budaeva)

The system of Onuphidae with 23 genera grouped into two subfamilies has been suggested by Hannelore Paxton (1986) and has been widely accepted since then. The first phylogeny based on the analysis of the combination of 16S rDNA and 18S rDNA genes has been recently published in Molecular Phylogenetics and Evolution. None of the subfamilies or tested genera appeared to be para- or polyphyletic showing a strong congruence between the traditional morphology-based systematics of the family and the newly obtained molecular-based phylogenetic reconstruction. However the previously suggested hypotheses on intrageneraic relationships within onuphidae were largely rejected.

Phylogenetic tree of a bristle worm family Onuphidae (Budaeva et al., 2016)

Phylogenetic tree of a bristle worm family Onuphidae (Budaeva et al., 2016)

Suggested reading:

Budaeva N., Schepetov D., Zanol J., Neretina T., Willassen E. 2016. When molecules support morphology: Phylogenetic reconstruction of the family Onuphidae (Eunicida, Annelida) based on 16S rDNA and 18S rDNA. Molecular Phylogenetics and Evolution 94(B): 791–801. http://dx.doi.org/10.1016/j.ympev.2015.10.011

Paxton, H., 1986. Generic revision and relationships of the family Onuphidae (Annelida: Polychaeta). Records of the Australian Museum 38, 1–74. http://australianmuseum.net.au/uploads/journals/17658/175_complete.pdf

Aquabait Marine Worm Aquaculture: http://www.aquabait.com.au/about_aquabait_marine_worm_aquaculture.phtml

Nataliya Budaeva’s web page: http://nataliyabudaeva.wix.com/nataliyabudaeva

-Nataliya

Door #15: Guest researchers: Ivan

Ivan Nekhaev from Murmansk came to the University museum in November for a two week stay where he examined some of our mollusc collection. He kindly agreed to participate in our Advent blog adventure, and here is what he had to say:

The main goal of my work at the University Museum of Bergen was studying of minute snails of the family Rissoidae (and drinking a couple gallons of coffee as well :-)).

Rissoids, like many gastropod groups, are more diverse in tropical and subtropical waters whereas the number of species reached northern areas in their distribution is remarkably low: within the several hundreds of northern Atlantic rissoid species, slightly more than dozen of species are know from the adjacent part of the Arctic Ocean. Nonetheless, anatomy for the majority of species had never been investigated and hence the taxonomical status and generic position of some Arctic representatives of the family is questionable, while the accurate data on species composition are still absent for many regions of the Eurasian Arctic.

rect4027-001

During my work with the collections of the University Museum I investigated morphology of ten Scandinavian and Arctic species. These data will be used in revision of Eurasian Arctic rissoids and provide me with a good material for the further investigations in “southern” rissoidean snails.

-Ivan

Door #14: A world of colour and slime

Welcome to the world of Nudibranchs!

Flabellina rubrolineata (Mozambique) Photo: M. Malaquias

Flabellina rubrolineata (Mozambique) Photo: M. Malaquias

The nudibranchs are among the most beautiful animals in our seas. The palette of colours, shapes, and adaptations depicted by this group of gastropod molluscs has no parallel. Some species have no more than few millimetres where others can reach nearly half a meter. Some have a smooth skin, others are covered with long and delicate appendices.

Chromodoris boucheti (Mozambique) Photo: M. Malaquias

Chromodoris boucheti (Mozambique) Photo: M. Malaquias

Phillidia ocellata (Mozambique) Photo: M. Malaquias

Phillidia ocellata (Mozambique) Photo: M. Malaquias

Most are benthic, but some are pelagic drifting with the oceanic currents. Nudibranchs feed on sponges, bryozoans, crustaceans, and cnidarians and even can incorporate in their tissues nematocysts sequestered from their prey which they use in self-defence. Probably, the most striking feature of these gastropods is the lack of a shell and presence of bright colours. These colours are usually a warning signal indicating the presence of deterrent chemicals some of them with pH values as low as 1 or 2. Some of these chemicals are biologically active and have been investigated for the treatment of several types of cancer diseases.

Flabellina pedata (Norway) Photo: M. Malaquias

Flabellina pedata (Norway) Photo: M. Malaquias

Polycera quadrilineata (Norway) Photo: M. Malaquias

Polycera quadrilineata (Norway) Photo: M. Malaquias

-Manuel

Door #13: Time for rejuvenation

Some of the fundamental existential impacts of the solar cycle were certainly understood by the Neolithic people who built Newgrange and were able to align the gigantic construction with the position of the sun rise at winter solstice. It was a point of return in “the wheel of time”, the annual cycle of “ageing, rebirth, and rejuvenation of Nature”. But how living individuals reproduce and come into being was a mystery right up to modern times. The Roman writer in natural history, Pliny (ca 70 AD), for instance stated that: “…after six months’ duration , frogs melt away into slime, though no one ever sees how it is done; after which they come to life again in the water during the spring, just as they were before. This is affected by some occult operation of Nature, and happens regularly every year. Mussels, also, and scallops are produced in the sand by the spontaneous operations of nature.”

Although the famous experiments by Francesco Redi had refuted some ideas about “spontaneous generation” in the mid 16-hundreds, the concept was still an important part of Lamarck’s theory of evolution that was opposed by his colleague Cuvier. Birth, of course, has also been a subject of discussions when pondering the mysteries of the Mary cult: was it really a case of parthenogenesis? What is really going on in the making of a body – the “process of incarnation”?

IMG_2861

Botryllus schlosseri (photo: K. Kongshavn)

Botryllus schlosseri, the “golden star tunicate”, is a common species on Atlantic coasts and recently has expanded its distributions to other seas as a result of human marine travelling. Researchers at the University of Bergen (Delsuc et al 2006) found that the tunicates belong to an evolutionary lineage that is the closest to vertebrates (including humans). B. schlosseri is relatively easy to keep in aquaria and has taught us a lot about reproduction and life cycles.

The similarity between the tunicates and the vertebrates are only apparent in the early stages of tunicate life. The larvae have a body with a tail containing the “chorda”, and a dorsal nerve tube, – both unique characteristic features of the Chordate animals (see figure 1A in in Voskoboynik el al. 2013). But these similarities disappear within a few hours when the free swimming larva has settled on some surface substrate and started the metamorphosis into the sack like body of an adult tunicate with a filter feeding gut. The larva was the result of sexual reproduction, the merged genetic material from sperm and egg. However, the metamorphosed individual will soon begin to reproduce asexually by budding off a copy of itself in a neighbouring position. The results of such multiplications are clusters of two to 12 genetically identical individuals in a star like pattern. These individuals, called zooids, are active for relatively short time, about a week at 19 oC, until they become inactive and gradually are reabsorbed by other cells in the colony while being replaced by new zooids. This sort of programmed cell death is called apoptosis and researches believe that studies of B. schlosseri can reveal some of what is going on with ageing and death of cells. It has been estimated that in an adult human body there is apoptosis of about 50 to 70 billion cells per day. Fortunately there is also renewal of cells, like in the growing colony of Botryllus. Very interesting things may happen if the zooids from different larvae are meeting up at the margins of two colonies with the so-called ampullae. Botryllus has a self-recognition system that is controlled by just one gene, but the gene occurs in many variants (alleles). If the alleles from two colonies are compatible, the blood vessel systems of the two colonies may grow together so that one colony is actually formed by zooids with different genetics. This is somewhat analogous to what happens between mother and child in the mammalian placenta. If the compatibility of two colonies is bad, they will “fight” each other in an inflammatory immune reaction. Such processes have special interest with respect to understanding immune systems and the outcome of organ transplantation.

It takes about 3-4 weeks for a colony to become sexually mature so that egg and sperm may be released in turn, avoiding self-fertilization. The duration of a colony is believed to be about 12 to 18 months in Norwegian waters (Moen & Svendsen 2008).

The reproduction system of B. schlosseri is just one of many different reproduction systems of animals. Where does individuality begin and stop? Would a zooid greet its neighbour with “Merry Christmas, I!”?

Suggested reading:

Delsuc et al. (2006). Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature: 439:965-968.

Manni et al (2007). Botryllus schlosseri: A model ascidian for the study of asexual reproduction. Developmental Dynamics 236(2): 335-352.

Moen & Svendsen (2008) Dyreliv i havet. KOM Forlag.

Tiozzo et al. (2006). Programmed cell death in vegetative development: Apoptosis during the colonial life cycle of the ascidian Botryllus schlosseri. Tissue and Cell 38 (3): 193-201

Voskoboynik et al. (2013) The genome sequence of the colonial chordate, Botryllus schlosseri Elife. DOI: 10.7554/eLife.00569.001

-Endre

Door #12: Plankton sampling with a vertebrate view!

HYPNO participating on an Arctic cruise by the Institute of Marine Research on RV Helmer Hanssen 17 Aug – 7 Sep 2015.

Julekalender Aino 2-001Most of the pelagic hydrozoans for HYPNO are collected with simple plankton nets, in the case of this Arctic cruise the double one you see in the picture. The net is towed vertically from above the bottom to the surface, bringing with it a representative sample of plankton – inclusive hydromedusae and siphonophores – from the entire water column. Standard plankton nets are generally lowered and retrieved at a speed of ~0.5 ms-1.

This particular station in the Arctic basin was over 2000 m deep, which means that a single tow takes more than an hour to complete. Sometimes waiting for the sample to come up can get a bit tedious – not at this station, though! With this beauty turning up right outside the hangar opening, the wait didn’t feel long at all!

SI_Arctic 24-8-2017 SI_Arctic 24-8-2016-Aino

Door #11: Just a white blob?

Colobocephalus costellatus repainted from M. Sars (T.R. Oskars)

Colobocephalus costellatus repainted from M. Sars (T.R. Oskars)

When researching small, obscure sea slugs you are bound to run into surprises. Partly because it often takes a long time between discovery and identification, and also because a lot of the really interesting stuff is first revealed when new methods become widely available.

In 2011 a team of researchers from the Invertebrates collection were sampling specimens in Aurlandsfjorden for the Invertebrate collections and range data for the Norwegian Biodiversity Information Centre (Artsdatabanken). Among other interesting critters they found a 2 mm long white blob. While not initially impressive this small blob turned out to be the enigmatic cephalaspidean sea slug Colobocephalus costellatus (Cephalaspidea: Heterobranchia) described by Michael Sars from Drøbak in 1870. At the time of its re-discovery it was thought that this species, which is unique for Norway, had not been seen or collected since M. Sars first laid hands on it 145 years ago (more (in Norwegian) here). However, you continuously discover more information in the course of scientific work. During their work on the enigmatic slug Lena Ohnheiser and Manuel Malaquias found in the literature that the species had in fact been discovered a couple of times since 1870, first by Georg Ossian Sars in Haugesund some years after his father, and more recently by Tore Høisæter of Bio UIB in Korsfjorden outside Bergen.

Still, no in-depth analyses have been done on this species since M. Sars until Nils Hjalmar Odhner of the Swedish Natural History Museum drew the animal from the side showing some of the organs of the mantle cavity.

Most authors have had real difficulties to place this slug within the cephalaspids, and M. Sars even thought is possible that the slug might not be an opisthobranch. Some placed it within Diaphanidae based only on the globular shell, a family that has been poorly defined and often used as a “dump taxon” for species that hare hard to place. Yet others thought it might even be the same as the equally enigmatic Colpodaspis pusilla, which has been suggested to be a philinid sea slug (flat slugs digging around in mud and sand).

What was unique about the most recent find was that this was the first time it was collected alive and photographed with high magnification. The material was also so fresh that Lena and Manuel could dissect the animal and study its internal organs. In their 2014 paper “The family Diaphanidae (Gastropoda: Heterobranchia: Cephalaspidea) in Europe, with a redescription of the enigmatic species Colobocephalus costellatus M. Sars, 1870” they tried to resolve the relationships between these globe shelled slugs. What they found was that Diaphanidae was likely not a real grouping of species, containing at least three distinct groups, where one group was Colobocephalus and Colpodaspis, which were closely related to each other, but also quite distinct.

Colobocephalus costellatus M. Sars, 1870. Photo Lena Ohnheiser, CC-BY-SA. Also featured on http://www.artsdatabanken.no/File/1292

Colobocephalus costellatus M. Sars, 1870. Photo: Lena Ohnheiser, CC-BY-SA. Also featured on http://www.artsdatabanken.no/File/1292

Another new development with the sampling in Aurlandsfjorden was that the slugs were preserved in alcohol rather than formalin. Formalin is good for preserving the morphology of animals, but it destroys DNA. On the other hand, alcohol is perfect for preserving DNA. This lead to C. costellatus to be included in a 2015 DNA based phylogenetic analysis of cephalaspidean sea slugs.

Modified Tree from Oskars et al. (2015)

Modified Tree from Oskars et al. (2015)

This resulted in that the slug was found to be indeed an Opisthobranchia, and as Lena and Manuel thought, Colobocephalus and Colpodaspis were placed in their own family, Colpodaspididae. Whereas the traditional “Diaphanidae” was split apart. Even weirder was the sea slugs that were shown to be the closest relatives of Colpodaspididae, which were neither the philinids or the diaphanids. The closest relatives turned out to be slugs that are equally as weird and unique as Colpodaspididae, namely the swimming and brightly colored Gastropteridae (sometimes called Flapping dingbats) and the Philinoglossidae, which are tiny wormlike slugs that live in between sand grains.

*Cousin Meeting*  - "You sure we are related?"  - "Well, the scientists seem to think so. I see no reason to waste a good party!"

*Cousin Meeting*
– “You sure we are related?”
– “Well, the scientists seem to think so. I see no reason to waste a good party!”

So it took 145 years from its discovery before Colobocephalus became properly studied and its family ties revealed, but it is still mysterious as we do not know much about their ecology or diet.

Suggested reading:

Colobocephalus costellatus: http://www.biodiversity.no/Pages/149747

Colpodaspis pusilla: http://www.biodiversity.no/Pages/149766

Philinoglossa helgolandica: http://www.biodiversity.no/Pages/149915

Høisæter, T. (2009). Distribution of marine, benthic, shell bearing gastropods along the Norwegian coast. Fauna norvegica, 28.

Gosliner, T. M. (1989). Revision of the Gastropteridae (Opisthobranchia: Cephalaspidea) with descriptions of a new genus and six new species. The Veliger, 32(4), 333-381.

Odhner, N.H. (1939) Opisthobranchiate Mollusca from the western and northern coasts of Norway. Kongelige Norske Videnskabers Selskabs Skrifter, 1939, 1–92.

Ohnheiser, L. T., & Malaquias, M. A. E. (2014). The family Diaphanidae (Gastropoda: Heterobranchia: Cephalaspidea) in Europe, with a redescription of the enigmatic species Colobocephalus costellatus M. Sars, 1870. Zootaxa, 3774(6), 501-522.

Oskars, T. R., Bouchet, P., & Malaquias, M. A. E. (2015). A new phylogeny of the Cephalaspidea (Gastropoda: Heterobranchia) based on expanded taxon sampling and gene markers. Molecular phylogenetics and evolution, 89, 130-150.

Sars, M. (1870) Bidrag til Kundskab om Christianiafjordens fauna. II. Nyt Magazin for Naturvidenkaberne, 172–225.

-Trond